Semester Review

$2+5)$ Draw a picture!
3) Coterminal angles

Know 8 fund identities Know spec. L values

Convert Pegs to Rads

$$
\begin{aligned}
& * \frac{\pi}{180^{\circ}} \\
& 220^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{229}{189} \pi=\frac{11 \pi}{9}
\end{aligned}
$$

$$
* \frac{180^{\circ}}{\pi}
$$

 Discus $=10^{\prime \prime}$ diam.

Find angular vel.

$$
\begin{aligned}
\omega=\frac{\theta}{t} & =\frac{420,000 \cdot 2 \pi}{1 \mathrm{sec}}= \\
& =840,000 \pi \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

Connors throws at $420,000 \mathrm{rev} / \mathrm{sec}$

Find linear vul.

$$
\begin{aligned}
& V=\frac{r \theta}{t}=\frac{5^{\text {in }} \cdot 420,000 \cdot 2 \pi}{1 \sec } \\
& 4,200,000 \pi \frac{\operatorname{in}}{\sec }
\end{aligned}
$$

$$
\begin{aligned}
& 4,200,000 \pi \frac{\mathrm{ric}}{\mathrm{sec}} \cdot \frac{1 \mathrm{ff}}{12 \mathrm{~m}} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \cdot \frac{3600 \mathrm{sec}}{1 \mathrm{hr}} \\
& =\frac{4,200,000 \pi \cdot 3600}{12 \cdot 5280}=749,698.25 \frac{\mathrm{mi}}{\mathrm{hv}}
\end{aligned}
$$

II Right $\Delta<$ Oscar/ sob....-
Law of sines/cosines
12 Special angles
$\sec \frac{5 \pi}{4}$

$$
=\sqrt{11 / 4}
$$

13-15 Identities

- Pay attention to angles!'

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
& =1-2 \sin ^{2} x
\end{aligned}
$$

$$
\frac{\sin 2 x}{\cos 2 x-1}=-\cot x \cos ^{2} x-\cot x \sin ^{2} x=2 \cos ^{2} x-1
$$

$$
\frac{22 \sin x \cos x}{X-2 \sin ^{2} x-x}=-\cot x\left(\cos ^{2} x+\sin ^{2} x\right)
$$

$$
-\frac{\cos x}{\sin x}=-\cot x
$$

$$
-\frac{\cos x}{\sin x}=-\frac{\cos x}{\sin x}
$$

14915

$$
\begin{aligned}
& \text { Find } \sin (A+B)=\sin A=\frac{5}{13} y Q I I \\
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \text { Wot ing } \xrightarrow[\text { fund }]{\longrightarrow}=()()+(x)
\end{aligned}
$$

1) Write out the identity
2) Draw picture (s)
3) $F_{1} l l$ in values

$$
\begin{aligned}
& y=3 \csc \left(2 x-\frac{\pi}{2}\right)+1_{\pi}^{\text {spacing }}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=\pi / 2 \quad x=\pi / 4
\end{aligned}
$$

