Semester Review
Inverse Trig Functions
Always in Radians!

$$
\operatorname{Sin}^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3} \quad \pi / 3
$$

$$
\sin \pi / 6=1 / 2
$$

$$
\sin ^{-1}(1 / 2)=\pi / 6
$$

$\tan \left(\operatorname{Arccsc}-\frac{7}{2}\right) \frac{r}{y}$
$\tan (\theta)=\frac{y}{x}=-\frac{2}{3 \sqrt{5}} \cdot \sqrt{5} \stackrel{6 x}{7} \sqrt{x}^{-2}$

$$
=\frac{-2 \sqrt{5}}{15}
$$

$$
\begin{aligned}
& \cos \left(\sin ^{-1} \frac{4}{x}\right) \frac{y}{r} \\
& \cos (\theta)=\frac{x}{x} \\
& =\frac{\sqrt{x^{2}-16}}{x} \sqrt{x^{2}} \\
& \sin (2 \operatorname{Arctan} 3 / 4 \\
& \sin (2 \theta) \\
& =2 \sin \theta \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sin \theta \cos \theta \\
& =2(3 / 5)(4 / 5)
\end{aligned}
$$

$$
\begin{aligned}
& =2(3 / 5)(4 / 5) \\
& =24
\end{aligned}
$$

$$
=\frac{74}{25}
$$

$$
\operatorname{Cos}^{-1} x+
$$

Solving Inv Trig S8.

1) Isolate tr funds with

$$
\cos ^{-1} x+\pi / 6=\pi
$$

2) Do inverse switch

$$
\cos ^{-1} x=\frac{\Sigma}{6} \pi
$$

3) Solve for variable.

$$
\begin{aligned}
& 19(f) \\
& \sin \left[\operatorname{Tan}^{-1}(3 / 4)-\cos ^{-1}\left(\frac{-5}{13}\right)\right] \\
& \sin [A-B] \\
& =\sin A \cos B-\cos A \sin B
\end{aligned}
$$

Solving Trig Equations

$$
\begin{aligned}
\tan \frac{x}{2} & =\sqrt{\frac{1-\cos x}{1+\cos x}} \\
& =\frac{\sin x}{1+\cos x} \\
& =\frac{1-\cos x}{\sin x}
\end{aligned}
$$

$21(d) \quad \tan \frac{x}{2}+2 \sin 2 x=\csc x$
$\sin x\left[\frac{1-\cos x}{\sin x}+4 \sin x \cos x=\frac{1}{\sin x}\right.$

$$
-k-\cos x+4 \sin ^{2} x \cos x=
$$

Check:

1) variables in denom.
$4 \sin ^{2} x \cos x-\cos x=0$
2) Square both sides)

$$
\begin{array}{lr}
\cos x & \left(4 \sin ^{2} x-1\right)=0 \\
\cos x=0 \quad 4 \sin ^{2} x-1=0 \\
\sqrt{\sin ^{2} x}=\sqrt{1 / 4} \\
\sin x=+/ 1 / 2 \\
x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{array}
$$

$$
\begin{aligned}
& \frac{\text { Polar Chord }}{(r, \theta)} \\
& \text { Rect. Cord } \\
& r=\sqrt{x^{2}+y^{2}} \\
& \left(6,240^{\circ}\right) \text { 床 } \\
& \begin{array}{ll}
\left(6,240^{\circ}\right) \text { 60 } & x=r \cos \theta \\
x=6 \cos 240^{\circ}=6 \cdot \frac{1}{2}=-3 & y=r \sin \theta
\end{array} \\
& \begin{array}{l}
x=6 \cos 240=6 \\
y=6 \sin 240^{\circ}=6 \cdot \sqrt{3} / 2=-3 \sqrt{3}
\end{array} \\
& (-3,-3 \sqrt{3}) \\
& (-2,4) \text { change pear } \\
& x=r \cos \theta \\
& \tan \theta=y / x \\
& \begin{aligned}
16+49 & =r^{2} \\
\sqrt{65} & =\sqrt{r^{2}}
\end{aligned} \\
& \tan \theta=\frac{4}{-7} \\
& \begin{array}{l}
3^{\circ} \tan ^{-1}(-4 / 7)=29.2^{\circ} \\
\left.\left(\sqrt{65}, 150.3^{\circ}\right)\right)^{\circ}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{35\left(\cos 70^{\circ}+i \sin 70^{\circ}\right)}{7\left(\cos 10^{\circ}+i \sin 10^{\circ}\right)}=5\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \\
& (\sqrt{3}-i \sqrt{3})^{6}= \\
& (\sqrt{3})^{2}+(\sqrt{3})^{2}=r^{2} \\
& \begin{aligned}
\tan \theta & =-\frac{\sqrt{3}}{\sqrt{3}} \\
& =-1
\end{aligned} \\
& 3+3=r^{2} \\
& \frac{\sqrt{3}}{\sqrt{8}} \frac{\sqrt{3}}{\sqrt{6}}-\sqrt{3} \\
& \theta=315^{\circ} \\
& \begin{aligned}
&=-1 \\
&-\left[\sqrt{6}\left(\cos 315^{\circ}+i \sin 315^{\circ}\right)\right]^{6}
\end{aligned} \\
& \text { Solve for } x \text {. } \\
& \left(x^{4}\right)=(\sqrt{3}-i \sqrt{3})^{1 / 4} \\
& \begin{array}{l}
\left.x=\left[\sqrt{6}\left(\cos 315^{\circ}+i \sin 315^{0}\right)\right]^{1 / 4}\right]^{6^{1 / 2}} 6^{3} \\
\left(6^{1 / 2}\right)^{1 / 4} \quad 315 \cdot \frac{1}{4}=78.75
\end{array} \\
& \begin{array}{c}
\left(6^{1 / 2}\right)^{1 / 4} 315 \cdot \frac{1}{4}=78.75 \\
360^{\circ} \cdot \frac{1}{40}=90^{\circ}
\end{array} 216\left(\cos 1890^{\circ}+i \sin 1890^{\circ}\right) \\
& 360^{\circ} \cdot 5=1800^{\circ} \\
& 216\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \\
& 216(0+i \cdot 1) \\
& =216 i
\end{aligned}
$$

