TEChniques of Integration
Integ. by parts

$$
\begin{aligned}
& \int x^{2} \cos x e^{x}\left(x^{2}+2 x+1\right) d x \int \cos ^{2} x=\frac{1}{2}(1+\cos 2 x \\
& \begin{cases}u=x^{2} & d v=\cos x \\
d u=2 x d x & v=\sin x\end{cases} \\
& =x^{2} \sin x-\int 2 x \sin x d x \\
& x^{2} \sin x-\left[-2 x \cos x+\int+2 \cos x d x\left[\begin{array}{l}
u=2 x \\
d u=2
\end{array}\right.\right. \\
& u=2 x \quad d v=\sin x d x \\
& x^{2} \sin x+2 x \cos x-2 \sin x+C
\end{aligned}
$$

Trig Substitution

$$
\begin{aligned}
& \text { Trig Substitution } \\
& \int \frac{4 x^{2}}{\sqrt{1-9 x^{2}}} d x \int \frac{2 x^{2}}{4 x^{2}+1} d x \\
& \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
\end{aligned}
$$

