Trigonometric Integrals

$$
\begin{array}{r}
\int \sin 4 x \cos 3 x d x \\
\frac{1}{2} \int(\sin 7 x+\sin x) d x \\
\frac{1}{2}\left[-\frac{1}{7} \cos 7 x-\cos x\right]+C
\end{array}
$$

$$
\begin{aligned}
& \int \sin ^{5} x d x \\
& \int \sin x \cdot \sin ^{4} x d x \\
& \int \sin x \cdot\left(\sin ^{2} x\right)^{2} d x \\
& \int \sin x\left(1-\cos ^{2} x\right)^{2} d x \\
& u=\cos x \\
& d u=-\sin x d x \\
& \int \operatorname{sint}\left(1-u^{2}\right)^{2}\left(1-u^{2}\right)\left(1-u^{2}\right) \frac{d u}{-\sin x} \\
& +\int\left(1+2 u^{2}+u^{4}\right) d u \\
& \text { If one term has an old power. } \\
& \text { 1) Split } \sin x \text { or } \cos x \text { off } \\
& \text { the odd powered term } \\
& \text { 2) Rewrite the remaining } \\
& \text { term as }\left(\sin ^{2} x\right)^{p} \text { or }\left(\cos ^{2} x\right)^{p} \\
& \text { 3) Use } \sin ^{2} x+\cos ^{2} x=1 \\
& \text { to rewrite squared } \\
& \text { term } \\
& \text { 4) } U \text {-sub, cancel, } x \\
& \text { integrate } \\
& =-\mu+\frac{2}{3} u^{3}-\frac{1}{5} u^{5}+C \\
& (x+2 y)^{5} \\
& x^{5}(3 y)^{0} x^{4}(3 y)^{1} x^{3}(3)^{2} x^{2} \\
& =-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C
\end{aligned}
$$

$$
\begin{aligned}
& \int \cos ^{4} x d x \\
& \cos 2 x=1-2 \sin ^{2} x \quad \cos 2 x=2 \cos ^{2} x-1 \\
& 2 \sin ^{2} x=1-\cos 2 x \quad 1+\cos 2 x=2 \cos ^{2} x \\
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \frac{1}{2}\left(1+\cos _{4 x}^{2 x}\right)=\cos _{2 x}^{2} x \\
& \int\left(\cos ^{2} x\right)^{2} d x \\
& \int\left[\frac{1}{2}\left(1+\cos ^{2} x\right)\right]^{2} d x \\
& \frac{1}{4} \int\left(1+2 \cos ^{2} x+\cos ^{2} 2 x\right) d x \\
& \frac{1}{4}\left[\int 1 d x+\int 2 \cos 2 x d x+\int \cos ^{2} 2 x d x\right. \\
& \text { identity } w_{i} \text { th } \\
& \sin ^{2} x \text { or } \cos ^{2} x \\
& \text { 3) FOIL + integrate } \\
& \frac{1}{4}\left[x+\sin 2 x+\frac{1}{2} \int(1+\cos 4 x) d x\right. \text { each term separately. } \\
& \frac{1}{4}\left[x+\sin 2 x+\frac{1}{2}\left[x+\frac{1}{4} \sin 4 x\right]+c\right. \\
& \frac{1}{4}\left[x+\sin 2 x+\frac{1}{2} x+\frac{1}{8} \sin 4 x\right]+C \\
& \frac{1}{4}\left[\frac{3}{2} x+\sin 2 x+\frac{1}{8} \sin 4 x\right]+C \\
& \left\{\frac{3}{8} x+\frac{1}{4} \sin ^{2} x+\frac{1}{32} \sin 4 x+C\right\} \\
& \text { Both powers even } \\
& \text { 1) Rewrite as powers of } \\
& \left(\sin ^{2} x\right)^{p} \text { or }\left(\cos ^{2} x\right)^{P} \\
& \text { 2) Use a double angle } \\
& \text { identity } w_{1} \text { th }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12) } \int \sin ^{2} x \cos ^{4} x d x \\
& \int \sin ^{2} x\left(\cos ^{2} x\right)^{2} d x \\
& \int \frac{1}{2}(1-\cos 2 x) \cdot\left[\frac{1}{2}(1+\cos 2 x)\right]^{2} \\
& \frac{1}{8} \int(1-\cos 2 x)(1+\cos 2 x)(1+\cos 2 x) d x \\
& \frac{1}{8} \int\left(1-\cos ^{2} 2 x\right)(1+\cos 2 x) d x \\
& \frac{1}{8} \int\left(\sin ^{2} 2 x\right)(1+\cos 2 x) d x \\
& \frac{1}{8} \int \sin ^{2} \frac{2 x}{\text { Duoble }} d x+\frac{1}{8} \int \sin ^{2} 2 x \cos 2 x d x \\
& u=\sin 2 x \\
& \text { Angle identity }
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin ^{6} 2 x \cos ^{3} 2 x d x \\
& \int^{6} \sin ^{6} 2 x \cdot \cos ^{2} 2 x \cdot \cos 2 x d x \\
& \int \sin ^{6} 2 x \cdot\left(1-\sin ^{2} 2 x\right) \cos 2 x \quad u=\sin 2 x \\
& \int u^{6}\left(1-u^{2}\right) \cos 2 x \cdot \frac{d u}{2 \cos 2 x} \\
& \frac{1}{2} \int\left(u^{6}-u^{8}\right) d u
\end{aligned}
$$

