VECTORS - $\overline{\vec{a}}{ }^{y}$ directed line segment

Form 1:

$$
\begin{array}{ll}
|v|=4 & \theta=120^{\circ} \\
(r, \theta) &
\end{array}
$$

Form 2: Component Form

$$
\langle x, y\rangle
$$

$$
\langle 2,3\rangle
$$

Find magnitude 4 direction (Find component form.
$\langle 3,-4\rangle$

$$
\begin{gathered}
9+16=|v|^{2} \\
2 s=\left\lvert\, \tan \theta=\frac{-4}{3}\right. \\
5=|v| \\
\tan ^{-1}(4 / 3)^{2}= \\
53^{\circ} \\
\left.|v|=5 \theta=307^{\circ}\right)
\end{gathered}
$$

120 N force acting at 20° 80 N force acting at 120°
What is the magnitude w direction if:
resultant force $\geqslant 3$ rd force that produces

$$
\begin{gathered}
\left.x^{2}=120^{2}+80^{2}-2(120)(80) \cos 50^{\circ}\right) \\
x=155 N \\
\left.\frac{\sin A}{80}=\frac{\sin 80^{\circ} .80}{155}\right)=31^{\circ}
\end{gathered}
$$

$$
\text { 155N@ } 251^{\circ}
$$

