ANTIDIFFERENTIATION = INTE GRATiN
Derivative $=$ Differentiation
Given the derivative, find the original func $=$
Antidifferentiation

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}+8 x-3 x \quad \text { Power for Integrals } \\
& f(x)=2 x^{3}+4 x^{2}-3 x+\underset{\substack{\text { integer } \\
\text { sian }}}{C} \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \\
& \int\left(8 x^{5}-\frac{1}{2 x^{6}}+\sqrt[3]{x^{2}}-5\right) d x \quad \begin{array}{l}
y=x^{5} \\
d y=5 x^{4} d x
\end{array} \\
& =\int\left(8 x^{5}-\frac{1}{2} x^{-6}+x^{2 / 3}-5\right) d x \quad \frac{B 4}{\Delta x} \frac{d y}{d x^{2}}=5 x^{4} d x \\
& =\frac{8 x^{6}}{6}-\frac{1}{2} \frac{x^{-5}}{-5}+\frac{3}{5} \cdot x^{5 / 3}-5 x+C \\
& =\frac{4}{3} x^{6}+\frac{1}{10 x^{5}}+\frac{3}{5} x^{5 / 3}-5 x+C
\end{aligned}
$$

$$
\begin{aligned}
& \int\left(x^{2}-3\right)\left(x^{5}+8 x\right) d x \leftarrow F O 1 L \\
& \int\left(x^{7}+8 x^{3}-3 x^{5}-24 x\right) d x \\
= & \frac{x^{8}}{8}+\frac{8 x^{4}}{4}-\frac{3 x^{6}}{6}-\frac{24 x^{2}}{2}+C \\
= & \frac{1}{8} x^{8}+2 x^{4}-\frac{1}{2} x^{6}-12 x^{2}+C \\
& \int \frac{3 p^{4}-2 p^{2}+9}{p^{2 / 3}} d p \\
& \int\left(3 p^{4}-2 p^{2}+9\right) \cdot p^{-2 / 3} d p \\
= & \frac{3}{13} \cdot 3 p^{13 / 3}-\frac{3}{7} \cdot 2 p^{7 / 3}+3 \cdot 9 p^{1 / 3}+C \\
= & \frac{9}{13} p^{13 / 3}-\frac{6}{7} p^{7 / 3}+27 p^{1 / 3}+C
\end{aligned}
$$

Definite Integrals - Answer is isericaly
$\lim _{\substack{\operatorname{lin} t \\ \text { inf } \\ \text { in }}}<\int_{-1}^{2}(2 x-5) d x$

Indefinite Integrals expression with $+C$

$$
\begin{aligned}
& =\frac{2 x^{2}}{\frac{1}{2}}-\frac{5 x^{1}}{1}+\left.C\right|_{-1} ^{2} \\
& =x^{2}-5 x+\left.C\right|_{-1} ^{2} \\
& =4-10+\not \subset+[-1+5+\not \subset] \\
& =-12
\end{aligned}
$$

$$
\begin{aligned}
& \int_{4}^{9}\left(\frac{1}{\sqrt{x}}+2 \sqrt{x}\right) d x \\
& \int_{4}^{9}\left(x^{-1 / 2}+2 x^{1 / 2}\right) d x \\
& =\frac{2}{1} x^{1 / 2}+\left.\frac{2 \cdot 2}{3} x^{3 / 2}\right|_{4} ^{9} \\
& =2 x^{1 / 2}+\left.\left.\frac{4}{3} x^{3 / 2}\right|_{4} ^{9^{3}}\right|_{4} \\
& =2 \cdot 3+\frac{4}{3} \cdot 2^{27}+\left[\frac{4^{1 / 2}}{2} \cdot 2+\frac{4}{3} \cdot 8\right] \\
& =6+36-4-\frac{32}{3} \\
& =\frac{38-3 \frac{3}{3}}{3} \\
& =\frac{114}{3}-\frac{32}{3}=\frac{82}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-3}^{2} \frac{x^{4}-3 x^{3}}{x^{2}} d x \\
& \int_{-3}^{2}\left(x^{4}-3 x^{3}\right) \cdot x^{-2} d x \\
& \int_{-3}^{2}\left(x^{2}-3 x\right) d x \\
& =\frac{x^{3}}{3}-\frac{3 x^{2}}{2} \int_{-3}^{2} \\
& =\frac{8}{3}-6+\left[+9+\frac{27}{2}\right] \\
& =3+8 / 3+\frac{27}{2} \\
& =\frac{18}{6}+\frac{16}{6}+\frac{81}{6}=115
\end{aligned}
$$

