

$$
\lim _{x \rightarrow 2} x^{2}+1
$$

Limits
D) Sub t in

If?:
2) Factor or Conjugate

$$
\begin{aligned}
& \lim _{x \rightarrow-4} \frac{x^{2}-3 x}{\sqrt{x+8}}=\frac{16+12}{\sqrt{-9+8}}=\frac{28}{\sqrt{4}}=\frac{28}{2}=14 \\
& \lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x^{2}-3 x}=\frac{9+12-21}{9-9}=\frac{0}{0} \longleftarrow \text { indeterminate } \\
& \\
& \lim _{x \rightarrow 3} \frac{(x+7)(x-3)}{x(x-3)}=\frac{10}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-5} \frac{x^{3}+125}{x^{2}-25}=\frac{-125+125}{25-25}=\frac{0}{0} \\
& \lim _{x \rightarrow-5} \frac{(x+5)\left(x^{2}-5 x+25\right)}{(x+5)(x-5)}=\frac{25+25+25}{-5-5}=\frac{75}{-10} \\
& \lim _{x \rightarrow 64} \frac{\sqrt{x}-8(\sqrt{x}+3)}{x-64(\sqrt{x+3}) \frac{8-8}{64-64}}=\frac{0}{0} \\
&=\left.\lim _{x \rightarrow 64} \frac{-1500-7.5}{(x-67}\right)(\sqrt{x+8} \\
&= \lim _{x \rightarrow 69} \frac{1}{\sqrt{x}+8}=\frac{1}{\sqrt{64}+8}=\frac{1}{16} \quad \frac{4-\sqrt{3})(2-\sqrt{3})}{4-3}
\end{aligned}
$$

Derivatives

$$
\begin{aligned}
& m=0 \\
& \text { Pretend } \\
& f(x)=x^{4}-3 x^{3}+2 x^{2}+x+1 \\
& m=\frac{r_{1} s e}{r_{1 n}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \text { Definition } \\
& \text { of Derivative } \\
& \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

A derivative represents the slope of a line tangent to a curve at a given pt.

$$
\begin{array}{ll}
f(x)=3 x^{2}+4 x-5 & f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
\text { Find } f^{\prime}(a) . & \lim _{x \rightarrow a} \frac{3 x^{2}+4 x-p^{2}+\left(-3 a^{2}+4 a+5\right)}{x-a} \\
\frac{\text { Symbals }}{f^{\prime}(x)} & \lim _{x \rightarrow a} \frac{\left(3 x^{2}-3 a^{2}\right)(-4 x-4 a)}{x-a} \\
\frac{d y}{d x} & \lim _{x \rightarrow a} \frac{3\left(x+a a^{2}-a^{2}\right)+4(x-a)}{x-a} \\
\begin{array}{ll}
x^{2}-9 & \lim _{x \rightarrow a} \frac{3(x+a)+4}{(x+3)(x-3)}=3(a+a)+4 \\
& =6 a+4
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{c}
f(x) \\
f^{\prime}(x) \\
\hline x^{2}+4 x-5 \\
6 x+4
\end{array} \quad \text { Power Rule for } \\
& \text { Derivatives } \\
& \frac{d}{d x} x^{n}=n x^{n-1} \\
& f(x)=5 x^{7}-\frac{4}{x^{6}}+\sqrt[3]{x^{2}}+8 \\
& f(x)=5 x^{7}-4 x^{-6}+x^{2 / 3}+8 x^{6} \\
& f^{\prime}(x)=35 x^{6}+24 x^{-7}+\frac{2}{3} x^{-1 / 3} \\
& =35 x^{6}+\frac{2^{4}}{x^{7}}+\frac{2}{3 x^{1 / 3}}
\end{aligned}
$$

