Fundamental Identities

Reciprocal

1) $\csc \theta=\frac{1}{\sin \theta}$
$\sin \theta=\frac{1}{\csc \theta}$
2) $\sec \theta=\frac{1}{\cos \theta}$
3) $\cot \theta=\frac{1}{\tan \theta}$

$$
\begin{gathered}
\sin (-\theta) \\
\tan \left(-30^{\circ}\right) \\
-\sqrt{3} / 3
\end{gathered}
$$

Ratio
4) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
5) $\cot \theta=\frac{\cos \theta}{\sin \theta}$

Pythagorean
6) $\sin ^{2} \theta+\cos ^{2} \theta=1$
7) $1+\tan ^{2} \theta=\sec ^{2} \theta$
8) $1+\cot ^{2} \theta=\csc ^{2} \theta$

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \cos (-\theta)=\cos \theta \\
& \tan (-\theta)=-\tan \theta
\end{aligned}
$$

Simplify.

$$
\begin{aligned}
& \csc x \cdot \tan x \\
= & \frac{1}{\sin x} \cdot \frac{\sin x}{\cos x} \\
= & \frac{1}{\cos x} \\
= & \sec x
\end{aligned} \left\lvert\, \begin{gathered}
\frac{\tan (-\theta)}{\sec \theta} \\
\frac{-\tan \theta}{\sec \theta} \\
\frac{-\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}}
\end{gathered}\right.
$$

$\sin 2 x=2 \sin x \cos x$
$\sec ^{2} x-\tan ^{2} x-\cos ^{2} x$

$$
=-\cos ^{2} x
$$

$$
=\sin ^{2} x
$$

7) $1+\tan ^{2} x=\sec ^{2} y^{2}$

$$
1=\sec ^{2} x-\tan ^{2} x
$$

6) $\sin ^{2} x+\cos ^{2} x=1$

$$
\sin ^{2} x=1-\cos ^{2} x
$$

$$
\begin{aligned}
& \tan ^{2} x-\frac{\sec ^{2} x}{\csc ^{2} x} \quad\left(1^{2}+x\right) x \\
& \frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\csc ^{2} x}{\frac{1}{\cos ^{2} x}} \frac{1}{\sin ^{2} x} \# 1 \\
& \left\lvert\, \begin{array}{l}
(1+\cos x) \frac{\cos x}{(1+\cos x \sin x}
\end{array}+\frac{\sin x(\sin x)}{1+\cos x(\sin x)}\right. \\
& \frac{\sin ^{2} x}{\cos ^{2} x}-\frac{1}{\cos ^{2} x} \cdot \frac{\sin ^{2} x}{1} \\
& \frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x}=0 \\
& =\frac{1}{\sin x} \\
& =\csc x
\end{aligned}
$$

Match.
B 1. $\csc ^{2} x-1=\cot ^{2} x$ \#8

D 2. $\cos ^{2} x+1$
C 3. $\frac{\tan x}{\sin x}=\frac{\frac{\sin x}{\cos x}}{\frac{\sin x}{1}}=\frac{\sin x}{\cos \times \frac{1}{\sin x} x}$
D. $\sin ^{2} x \cdot \cot ^{2} x+\sec x \cos x$
$\sin ^{2} x \cdot \frac{\cos ^{2} x}{\sin ^{2} x}+\frac{1}{\cos x} \cdot \frac{\cos x}{h}$ $=\cos ^{2} x+1$
A 4. $\sin x \sec x \cot x$

$$
\begin{aligned}
& \frac{\sin x}{1} \cdot \frac{1}{\cos x} \cdot \frac{\cos x}{\sec x} \\
& =1
\end{aligned}
$$

