

$$
\begin{aligned}
& \text { Solve for } x \\
& \ln (x+1)+\ln (x-3)=2 \ln x \\
& e^{\ln \left(x^{2}-2 x-3\right)}=e^{\ln x^{2}} \\
& -x^{2}-2 x-3=x^{2} \\
& -3=2 x \\
& \text { No Solution } \\
& \ln x-\ln (2 x-1)=8 \\
& e^{\ln \left(\frac{x}{2 x-1}\right)} e^{8} \\
& \text { (2xa) } \frac{x}{2 x-1}=e^{8}(2 x-1) \\
& x=2 e^{2} x-e^{8} \\
& e^{8}=2 e^{8} x-x \\
& e^{8}=x\left(2 e^{8}-1\right) \\
& \frac{e^{8}}{2 e^{8}-1}=x \\
& \approx 0 \text {. 50 }=x
\end{aligned}
$$

Partial Fractions

$$
\begin{aligned}
& 26 x-43=A(3 x-2)+B(2 x-5) \sqrt{\frac{4}{2 x-5}+\left(\frac{7}{3 x-2}\right)} \\
& 26 x-43=3 A x-2 A+2 B x-5 B \\
& \begin{array}{l}
26=3 A+2 B \\
-43=-2 A-5 B
\end{array} \quad\left[\begin{array}{cc}
3 & 2 \\
-2 & -5
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
26 \\
-43
\end{array}\right]=\left[\begin{array}{l}
4 \\
7
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(3 x^{2}+7\right)(2 x-5)}{}=\frac{A x+B}{3 x^{2}+7}+\frac{C}{2 x-5} \\
& \frac{x^{3}(x-4)^{2}}{}=\frac{A}{(x-4)^{2}}+\frac{B}{x-4}+\frac{C}{x^{3}}+\frac{D}{\left(x^{2}-0\right)^{3}}+\frac{E}{x^{2}}
\end{aligned}
$$

Lines
Find the eq of line between $(2,-3) \times(4,7)$

$$
y=m x+b
$$

$$
\begin{aligned}
m=\frac{7 t+3}{4-2} & =\frac{10}{2} \\
& =5
\end{aligned}
$$

Point-Slope

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=5(x-4)
\end{aligned}
$$

