Graphing Inequalities

$$
\begin{array}{rl|l|l}
& y<\sqrt[3]{x-1}+2 \\
& & \\
& 1 & 0 \\
> & \text { doted } & 8 & 2
\end{array}
$$

Asymptotes

$$
\begin{aligned}
& y=\frac{2}{x-3}+\frac{1(x-3)}{1(x-3)}-\cdots \\
& \frac{2+x-3}{x-3}=\frac{2}{=\frac{2 x-3}{0}}
\end{aligned}
$$

Vertical Asymp
Denom $=0$

$$
x=\#
$$

Infinitely many are possible

Horizontal Asymp

* Determine the highest power in the problem i pull that term from the numerator \downarrow denominator.

$$
y=\#
$$

2 are possible if $\sqrt{ }$
1 otherwise.

Find all horiz. + vertical asymptotes

$$
\begin{array}{cc}
y=\frac{3 x^{2}+1}{2 x^{2}-8} \quad & \frac{\text { Vertical }}{2 x^{2}-8=0} \\
& 2\left(x^{2}-4\right)=0 \\
2(x+2)(x-2)=0 \\
& x=-2,2 \\
& x=2 \quad x=-2
\end{array}
$$

$$
\text { None } \quad y=0
$$

$$
\begin{array}{r}
y=\frac{5 x^{2}-3}{4 x-1} \quad \frac{\text { Vertical }}{4 x-1=0} \quad \frac{\text { Horiz. }}{\frac{5 x^{2}}{0 x^{2}}} \\
x x=\frac{1}{4}
\end{array}
$$

None

Slant Asymptote

- occur when the numerator is one power higher than the denom.
- Cannot have horiz a slant
 asymp. in same graph
- long division

$$
f(x)=\frac{4 x^{2}+7}{2 x-1}
$$

No Horiz $\frac{4 x^{2}}{0 x^{2}}$
Vertical $2 x-1=0$

$$
\text { Slant }=y=m x+b
$$

$$
\begin{gathered}
\frac{2 x+1}{2 x-1} \sqrt{4 x^{2}+0 x+7} \\
\frac{4 x^{2}+2 x}{2 x+7} \\
2 x-1
\end{gathered}
$$

$$
\text { Slant: } y=2 x+1
$$

