

Draw a graph:
Domain: $[-5, \infty)$ Domain:
$f(-2)=$ undef. open circle or
asymptote

$$
f(3)=1
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-2^{2}} f(x)=\text { DNE } \\
& \lim _{x \rightarrow 3} f(x)=-1
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} x^{2}+2=3 \\
& \lim _{x \rightarrow 2} \frac{3 x^{2}-4 x-4}{x-2}=\frac{0}{0} \\
& \lim _{x \rightarrow 2} \frac{(3 x+2)(x-2)}{x-2}=\frac{8}{0} \\
& \lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{3}-27}=\frac{0}{0} \\
& \lim _{x \rightarrow 3} \frac{(x-3)(x-1)}{(x-3)\left(x^{2}+3 x+9\right)}=\frac{27}{27}
\end{aligned}
$$

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3(\sqrt{a+h}+3)}{h(\sqrt{9+h}+3)}=\frac{3-3}{0}=0
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{1+h-1}{h(\sqrt{9+h}+3)} \\
& \lim _{h \rightarrow 0} \frac{h}{h(\sqrt{9+h}+3)}=\frac{1}{3+3}=\frac{1}{6}
\end{aligned}
$$

