

* Find the eq. of a line MORE LINES given: - Graph -2 points parallel or perp. to another line LINEAR FUNCTION FACTS To KNOW Slope M= rise = y2-y1 A Graph lines * by hand * by calculator <u>Slope-intercept</u> y=mx+b Paralle find Tslope Tyint Same slopes * Point-Slepe (Know 2) of Sine Perpendicular opposite reciprocal stops $y - y_i = m(x - x_i)$ $m = \frac{3}{5} \int m = -\frac{5}{5}$ Standard form Ax+ By=C m=-6 $Im=\frac{1}{6}$ * nu fractions Vertical Horizontal A must be t m = undef. shope 80 $M = -\frac{R}{N}$ **N=** $\chi = #$ Y=#

Write the eq. of the line which pisses through (-2,8)
and is perpendicular to the line
$$2x-3y = 7$$
.
 $y-y_1 = m(x-x_1)$ $1m = -\frac{3}{2}$
 $y-8 = -\frac{3}{2}(x+t^2)$ $(-2,8)$
 $y-8 = -\frac{3}{2}(x+t^2)$ $(-2,8)$
 $y-8 = -\frac{3}{2}x-3$ $-\frac{3}{2}x^2$ $m = -\frac{A}{B} = \frac{t^2}{5}$
 $\frac{18}{19} = -\frac{3}{2}x + 5$ $m = -\frac{A}{B} = \frac{t^2}{5}$
 $\frac{18}{19} = -\frac{3}{2}x + 5$ $M = -\frac{A}{B} = \frac{t^2}{5}$
 $\frac{18}{19} = -\frac{3}{2}x + 5$ $M = -\frac{A}{B} = \frac{t^2}{5}$
 $\frac{18}{19} = -\frac{3}{2}x + 5$ $M = -\frac{A}{B} = \frac{t^2}{5}$
 $\frac{18}{19} = -\frac{18}{9-8}$ $X = 8$
 $(243, -\frac{1024}{5})(587, -\frac{1024}{5})$
 $y = -1024$

