

One-Sided Limits

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} \frac{2 x+3}{x-1}=\frac{13}{4} \\
& \lim _{x \rightarrow 2} \frac{3 x}{x-2}=\frac{6}{0}=D N \varepsilon \\
& \lim _{x \rightarrow 2^{-}} \frac{3 x}{x-2}=\frac{7}{-}=-\infty \\
& \lim _{x \rightarrow 2^{+}} \frac{3 x}{x-2}=\frac{t}{+}=+\infty \\
& \lim _{x \rightarrow-3^{+}} \frac{8 x}{(x+3)^{2}}=\frac{-24}{0}=\frac{-}{7}=-\infty
\end{aligned}
$$

$$
y=\frac{3}{x-2}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{8 x^{2}}{(x-4)^{4}}=\frac{128}{0}=++\infty \\
& \lim _{x \rightarrow 4^{-}} \frac{8 x^{2}}{(x-4)^{4}}=\frac{t}{t}=+\infty \\
& \lim _{x \rightarrow 4^{+}} \frac{8 x^{2}}{(x-4)^{4}}=\frac{t}{t}=+\infty \\
& \lim _{x \rightarrow 2^{-}} \sqrt{x-2}=\text { DNE } \\
& \frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
f(x)= \begin{cases}\frac{2 x+1}{3 x-1} & x<-1 \\
\frac{1}{(x-1)^{2}} & x>-1\end{cases} & \lim _{x \rightarrow 3} \frac{1}{(x-1)^{2}}=\frac{1}{4} \\
\lim _{x \rightarrow-1} f(x)=\frac{1}{4} \\
\lim _{x \rightarrow-1^{-}} \frac{2 x+1}{3 x-1}=-\frac{2+1}{-3-1}=\frac{+1}{+4} & \begin{cases}x^{2}-3 & x<2 \\
4 x+7 & x=2 \\
\frac{2}{x-2} & x>2\end{cases} \\
\lim _{x \rightarrow-1^{+}} \frac{1}{(x-1)^{2}}=\frac{1}{(-2)^{2}}=\frac{1}{4} & \begin{array}{l}
\lim _{x \rightarrow 2} f(x)=D N \varepsilon \\
\lim _{x \rightarrow 2^{-}} x^{2}-3=2^{2}-3=1 \\
\lim _{x \rightarrow 2^{+}} \frac{2}{x-2}=\frac{2}{2-2}=\frac{2}{0}=\frac{ \pm}{4} \\
2_{2} \cdot 1
\end{array}
\end{array}
$$

Limits to $\pm \infty$ rigorous

$$
\begin{align*}
& \lim _{x \rightarrow \infty} \frac{1}{x^{2}} x^{2} \\
& x^{\frac{1}{2}} 7 x^{2}+3
\end{align*}=\frac{\infty^{2}}{70^{2}+3} \quad \lim _{x \rightarrow \infty} \frac{x)^{2}}{7 x^{2}}=\frac{1}{7}
$$

$$
\begin{aligned}
& \lim _{y \rightarrow-\infty} \frac{5 y^{3}+4}{3 y+7}=\lim _{y \rightarrow-\infty} \frac{5 y^{3^{2}}}{3 y}=\lim _{y \rightarrow-\infty} \frac{5}{3} y^{2}=\frac{5}{3}(-\infty)^{2}=\infty \\
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+13}}{6 x+5}=\lim _{x \rightarrow-\infty} \frac{\sqrt[2]{x^{2}}}{6 x}=\lim _{x \rightarrow-\infty} \frac{\left|x^{\prime}\right|}{6 x}=\lim _{x \rightarrow-\infty} \frac{-x}{6 x}=-\frac{1}{6} \\
& \text { even-even-odd } \\
& \lim _{z \rightarrow-\infty}-3 z^{2}-7 z=\lim _{z \rightarrow-\infty}-3 z^{2}=-3(-\infty)^{2}=-3 \cdot+\infty=-\infty
\end{aligned}
$$

