

$$
\begin{aligned}
& \frac{\frac{6(2 x+5)^{3}\left(4 x-7 x^{2}\right)^{-1 / 4}(4-7 x)}{=}-\left(4 x-7 x^{2}\right)^{3 / 4 / 40}(10)(2 x-5)^{2}}{\left[(2 x+5)^{3}\right]^{2}} \\
& \frac{2(2 x+5)^{2}\left(9 x-7 x^{2}\right)^{-1 / 4}\left[3(2 x+5)(4-7 x)-5\left(4 x-7 x^{2}\right)\right]}{(2 x+5)^{6-2}} \\
& \frac{2\left[3\left(8 x-14 x^{2}+20 .-35 x x\right)-20 x+35 x^{2}\right]}{(2 x+5)^{4}\left(4 x-7 x^{2}\right)^{1 / 4}} \\
& \frac{2\left[24 x-42 x^{2}+60-105 x-20 x+35 x^{2}\right]}{(2 x+5)^{4}\left(4 x-7 x^{2}\right)^{1 / 4}} \\
& \frac{2\left[-7 x^{2}-101 x+60\right]}{(2 x+5)^{4}\left(4 x-7 x^{2}\right)}
\end{aligned}
$$

Solving Rational Equations + Inequalities

$$
\begin{aligned}
& \left(\begin{array}{l}
2(2 x-1) \\
(x+1)
\end{array} \frac{1}{2 x-1}+\frac{1(2 x-1)(x+1)}{x+1}_{2(2 x-1)(x+1)}^{2}\right]^{\frac{3}{2(1)}} \frac{\text { Excluded values }}{x \neq-1,1 / 2} \\
& 2(x+1)+2(2 x-1)=3(2 x-1)(x+1) \\
& 0=6 x^{2}-3 x-3 \\
& 0=3\left(2 x^{2}-x-1\right) \\
& 0=3(2 x+1)(x-1) \\
& x=-1 / 2,1
\end{aligned}
$$

$$
\begin{aligned}
& 1+\frac{3 y}{y-1}>2 \\
& -2 \\
& \frac{3 y}{y-1}-\frac{1(y-1)}{T(y-1)} 0 \\
& \frac{3 y-y+1}{y-1} \geq 0 \\
& \frac{2 y+1}{y-1} \geq 0
\end{aligned}
$$

if Cannot multidy by a variable expression + cancel (denom!

1) Set <0 or >0
2) Make common denom.
3) Test Points!

$\left(-\infty,-\frac{1}{2}\right] \cup(1, \infty)$

Write the equation of the polynomial given its roots.
b) Roots: $-5,1 / 2,4$

$$
\begin{array}{lll}
x=-5 & 4=\frac{1}{2} & x=4 \\
x+5=0 & 2 x=1 & x-4=0 \\
& 2 x-1=0 & \\
(x+5)(2 x-1)(x-4)=0 \quad 2 x^{3}+x^{2}-41 x+20
\end{array}
$$

