

Special Limits

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sin (n x)}{n x}=1 & \lim _{x \rightarrow 0} \frac{1-\cos (n x)}{n x}=0 \\
\lim _{x \rightarrow 0} \frac{5 \cdot \sin (5 x)}{5 \cdot x} & \lim _{x \rightarrow 0} \frac{3(1-\cos (12 x)}{3 \cdot 4 x} \\
5 \lim _{x \rightarrow 0} \frac{\frac{\sin 5 x}{5 x}}{5 \cdot 1}=\frac{1}{5} & 3 \lim _{x \rightarrow 0} \frac{1-\cos (12 x)}{12 x} \\
& \lim _{x \rightarrow 0} \frac{\frac{1}{x} \frac{\sin 6 x}{\sin 8 x}}{x} \\
\lim _{x \rightarrow 0} \frac{\frac{6}{6} \frac{\sin 6 x}{x}}{\frac{8}{8} \cdot \frac{\sin 8 x}{x}} \\
6 & \lim _{x \rightarrow 0} \frac{\frac{\sin 6 x}{6 x}}{\frac{\sin 8 x}{8 x}} \\
8
\end{array}
$$

$$
\begin{array}{cl}
\lim _{x \rightarrow \infty} e^{x}=+\infty & \lim _{x \rightarrow-\infty} e^{x}=0 \\
\lim _{x \rightarrow \infty} \ln x=+\infty & \lim _{x \rightarrow 0^{+}} \ln x=-\infty \\
\lim _{x \rightarrow 0^{+}} e^{1 / x}= \\
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\frac{1}{0}=\frac{+}{t}=+\infty \\
e^{\infty}=+\infty
\end{array}
$$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{1-e^{x}}{e^{-x}} & =\frac{1-e^{-\infty}}{e^{+\infty}}=\frac{1-0}{+\infty}=\frac{1}{\infty}=0 \\
\lim _{x \rightarrow \pi^{+}} \sec x & =\sec \pi \quad \cos 0=1 \\
& =-1
\end{aligned}
$$

$\sin \pi / 6=\frac{1}{2}$
$\sin ^{-1} 1 / 2=\pi / 6$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{1}{2}+} \frac{\cos ^{-1} x}{\sin 2 \pi x}=\frac{\cos ^{-1} 1 / 2}{\sin \left(12 \pi \cdot \frac{1}{2}\right)}=\frac{\frac{\pi}{3}}{0}=\frac{+}{\pi^{+}}=\frac{+\infty}{\pi}=-\infty
\end{aligned}
$$

