ImAGinary + Complex Numbers
\rightarrow square roots of negative numbers $i=\sqrt{-1}$

$$
\begin{align*}
& i^{\prime}=i \\
& i^{2}=i \cdot i=\sqrt{-1} \cdot \sqrt{-1}=-1 \\
& i^{3}=i^{2} \cdot i^{1}=-1 \cdot i=-i \\
& i^{4}=i^{2} \cdot i^{2}=-1 \cdot-1=1 \\
& i^{5}=i^{4} \cdot i^{1}=1 \cdot i=i \\
& i^{6}=i^{4} \cdot i^{2} \tag{15}
\end{align*}
$$

$$
\cdots \quad i=i
$$

$\cdots i_{3}^{2}=-1 \quad-5$
$\ldots i^{3}=-i \quad-.15$
$\cdots \dot{l}^{4}=1-0$
I won! I won!
(with 2 negatives in the middle)

Complex Arithmetic

$$
\begin{aligned}
& (5+3 i)+(7-8 i)=12-5 i \\
& (9-6 i)+(+3+4 i)=12-10 i \\
& (6-8 i)(5+2 i) \text { FOIL! } \\
& =30+12 i-40 i+16 i^{3} \\
& =46-28 i \\
& \begin{aligned}
(2-7 i)^{2} & =(2-7 i)(2-7 i) \\
& =4-14 i-14 i+49 i^{2} \\
= & -45-28 i
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6 \cdot i}{7 i \cdot i} \quad \frac{6}{7 \sqrt{2}} \cdot \sqrt{2} \quad\left(\frac{3+2 i}{5 i} \cdot i=\frac{3 i+2 i}{-5 \%}\right. \\
& =\frac{6 i}{-7 i}=-\frac{6 i}{7} \\
& =\frac{-3 i+2}{+5} \\
& =\frac{2-3 i}{5} \\
& 4+2 i(3-5 i) \\
& 3+5 i(3-5 i) \\
& \overline{3+5 \sqrt{2}}(3-5 \sqrt{2}) \\
& \frac{12-20 i+6 i+10 j^{z}}{9+25 \dot{Z}^{2}}=\frac{22-14 i}{34}=\frac{11-7 i}{17}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fractals - } 1980 \text { - Benoit } \\
& \text { Mandelbrot } \\
& f(x)=x^{2}+C \\
& \text { L4e } f(x)=x^{2}+0+0 i \\
& f(0)=0^{2}+0+0 i=9 \\
& f(0)=0^{2}+0+0 i=0 \\
& \text { Fractals- } \\
& \text { self-similar } \\
& f(x)=x^{2}-10 \\
& f(3)=3^{2}-10
\end{aligned}
$$

