a)

$$
\begin{gathered}
y+\ln (x y)=1 \\
\frac{d y}{d x}+\frac{1}{x y} \cdot\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0 \\
\frac{d y}{d x}+\frac{1}{y} \frac{d y}{d x}+\frac{1}{x}=0 \\
\frac{d y}{d x}\left(\frac{y}{y} 1+\frac{1}{y}\right)=-\frac{1}{x} \\
\frac{d y}{d x}\left(\frac{y+1}{y}\right)=-\frac{1}{x} \cdot \frac{y}{y+1} \\
\frac{d y}{d x}=\frac{-y}{x(y+1)}
\end{gathered}
$$

49

$$
\begin{aligned}
f(x) & =(\sin x)^{\ln x} \quad a=\frac{\pi}{2} \\
f(x) & =e^{\ln (\sin x)^{\ln x}} \\
f(x) & =e^{\ln x \cdot \ln (\sin x)} \\
f^{\prime}(x) & =e^{\ln x \cdot \ln (\sin x)} \cdot\left[\ln x \cdot \frac{1}{\sin x} \cdot \cos x+\ln (\sin x) \cdot \frac{1}{x}\right] \\
& =\sin x^{\ln x} \cdot\left[x \cdot \ln x \cot x+\frac{\ln (\sin x)}{x \cdot 1}\right] \\
& =(\sin x)^{\ln x}\left[\frac{x \ln x \cot x+\ln (\sin x)}{x}\right] \\
& =x^{\frac{\pi}{4} / 2} \frac{\frac{\pi}{2} \ln \left(\frac{\pi}{2}\right) \cdot 0+\ln (1)}{\pi / 2}=\frac{0}{\pi / 2}=0
\end{aligned}
$$

Inverse Trig Functions

$$
\begin{array}{ll}
y=\sin ^{-1} x & \frac{1}{y} x \\
\frac{x}{\sqrt{1-x^{2}}}=\sin y & \sqrt{a^{2}}+x^{2}=1 \\
\frac{1}{1}=\cos y \frac{d y}{d x} & \sqrt{1-x^{2}} \\
\frac{1}{\cos y}=\frac{d y}{d x} & \frac{d y}{d x} \frac{\sin ^{-1} x}{}=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d y}{d x} \cos ^{-1}=\frac{-1}{\sqrt{1-x^{2}}} \\
\frac{1}{\sqrt{1-x^{2}}}=\frac{d y}{d x} \quad \begin{array}{l}
\frac{d y}{d x} \tan ^{-1} x=\frac{1}{x^{2}+1} \\
\frac{d}{d x} \cot ^{-1} x=\frac{-1}{x^{2}+1} \\
\frac{d}{d x} \sec ^{-1} x=|x| \frac{1}{\sqrt{x^{2}-1}} \frac{d}{d x} \csc ^{-1} x=\frac{-1}{|x| \sqrt{x^{2}-1}}
\end{array}
\end{array}
$$

$$
\begin{aligned}
f(x) & =\sin ^{-1}\left(7 x^{5}\right) \\
f^{\prime}(x) & =\frac{1}{\sqrt{1-\left(7 x^{5}\right)^{2}}} \cdot 35 x^{4} \\
& =\frac{35 x^{8}}{\sqrt{1-49 x^{10}}} \\
f(x) & =\left[\csc ^{-1}\left(x^{4}\right)\right]\left[\tan ^{-1}\left(\ln x^{2}\right)\right] \\
f^{\prime}(x) & =\csc ^{-1}\left(x^{4}\right) \cdot \frac{1}{\left(\ln x^{2}\right)^{2}}+1 \frac{1}{x^{22}} \cdot 2 x+\tan ^{-1}\left(\ln x^{2}\right) \cdot \frac{-1}{4 x^{4} / \sqrt{x^{9}-1}} \cdot 4 x^{3} \\
& =\frac{2 \csc ^{-1}\left(x^{4}\right)}{x\left[\left(\ln x^{2}\right)^{2}+1\right]}-\frac{4 x^{3} \tan ^{-1}\left(\ln x^{2}\right)}{x^{4} \sqrt{x^{8}-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{3}-3 x^{2}+5 x-3}{x^{2}+x-2}=\frac{0}{0} \\
& \lim _{x \rightarrow 1} \frac{3 x^{2}-6 x+5}{2 x+1}=\frac{3-6+5}{2+1}=\frac{2}{3} \\
& \lim _{x \rightarrow 0} \frac{e^{x}-1-x}{\cos (2 x)-1}=\frac{1-1-0}{1-1}=\frac{0}{0} \\
& \lim _{x \rightarrow 0} \frac{e^{x}-1}{-\sin (2 x) \cdot 2}=\frac{1-1}{0 \cdot 2}=\frac{0}{0} \\
& \lim _{x \rightarrow 0} \frac{e^{x}}{-2 \cos (2 x) \cdot 2}=\frac{1}{-2 \cdot 1 \cdot 2}=\frac{1}{-4}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1-\ln x}{e^{1 / x}} x^{-1} \quad \lim _{x \rightarrow-\infty} e^{x}=0 \lim _{x \rightarrow \infty} e^{x}=\infty \\
& =\frac{1+{ }^{+\infty}}{e^{x / 2+\infty}}=\frac{\infty}{\infty} \quad \lim _{x \rightarrow 0^{+}} \ln x=-\infty \lim _{x \rightarrow \infty} \ln x=\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{-\frac{1}{x}}{e^{1 / x}-1 x^{-2}} \\
& \lim _{x \rightarrow 0^{+}} \frac{-\frac{1}{x}}{\frac{-e^{1 / x}}{x^{2}}} \\
& \lim _{x \rightarrow 0^{+}}+\frac{1}{x}+\frac{x^{2}}{e^{1 / x}} \\
& \lim _{x \rightarrow 0^{+}} \frac{x}{e^{1 / x}}=\frac{0}{e^{x / 4}}=\frac{0}{\infty}=0
\end{aligned}
$$

