Derivatives of exponential t LOG FUNCTIONS

$$
\begin{aligned}
& f(x)=e^{x} \quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \frac{d}{d x} e^{x}=e^{x} \\
& \lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h} \quad f(x)=e^{x^{2}+4 x} \\
& \lim _{h \rightarrow 0} \frac{e^{x} \cdot e^{h}-e^{x}}{h} \quad \begin{array}{l}
f^{\prime}(x)=e^{x^{2}+4 x} \cdot(2 x+4) \\
\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h} \quad f(x)=x^{2} \cdot e^{4 x^{3}} \\
f^{\prime}(x)=\underbrace{x^{2} \cdot e^{4 x^{3}} \cdot 12 x^{2}}+e^{e^{4 x^{3}} \cdot 2 x} \\
\lim _{h \rightarrow 0} e^{x}\left(\frac{e^{h}-1}{h}\right)=e^{x} \cdot 1 \\
=e^{x}\left[6 x^{3}+1\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& e^{y}=e^{\ln x} y=e^{\ln x} \quad \text { Find } \frac{d y}{d x} \text {. } \\
& \begin{array}{l}
y=\ln x \quad \frac{d y}{d x}=\frac{1}{x} \\
y=\ln \left(x^{3}-3 x^{5}\right)
\end{array} \\
& e^{y}=x \\
& e^{y} \cdot \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{e^{y}} \\
& =\frac{1}{x} \\
& y^{\prime}=\frac{1}{x^{3}-3 x^{5}} \cdot\left(3 x^{2}-15 x^{4}\right) \\
& =\frac{3 x^{2}-15 x^{4}}{x^{3}-3 x^{5}} \\
& =\frac{x^{2}\left(3-15 x^{2}\right)}{x^{2}\left(x-3 x^{3}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& y=a^{x} \quad y=2^{x} \quad \begin{array}{c}
y=5^{x}
\end{array} \quad \frac{d}{d x} a^{x}=\ln a \cdot a^{x} \\
& \ln y=x \cdot \ln a \\
& y=7^{\sin x} \\
& \frac{1}{y} \frac{d y}{d x}=\ln a \\
& y^{\prime}=\ln 7 \cdot 7^{\sin x} \cdot \cos x \\
& \frac{d y}{d x}=y \cdot \ln a \\
& f(x)=7^{\frac{e^{x^{2}}}{\tan x}} \\
& \begin{array}{l}
f(x)=7 \\
f^{\prime}(x)=\ln 7 \cdot 7^{\frac{e^{x^{2}}}{\tan x}}\left[\frac{\tan x \cdot e^{x^{2}} \cdot 2 x-e^{x^{2}} \cdot \sec ^{2} x}{\tan ^{2} x}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\log _{8} 3 x^{7} \\
& =\frac{\ln 3 x^{7}}{\ln 8} \\
& =\frac{1}{\ln 8} \ln 3 x^{7} \\
& =\frac{1}{\ln 8} \cdot \frac{1}{3 x^{+i}} \cdot 2 x x^{16} \\
& =\frac{7}{\ln 8} \cdot \frac{1}{x} \text { or } \frac{7}{x \ln 8}
\end{aligned}
$$

Variable raised to variable exponent. (Tower $\begin{gathered}\text { Fund }\end{gathered}$

$$
\begin{aligned}
f(x) & =x^{x^{2}} \stackrel{5}{\sqrt{\ln x} x^{2}} \\
f(x) & =e^{1} \\
f(x) & =e^{x^{2} \cdot \ln x} \\
f^{\prime}(x) & =e^{x^{2} \cdot \ln x} \cdot\left[x^{2} \cdot \frac{1}{x}+\ln x \cdot 2 x\right] \\
& =x^{x^{2}}[x+2 x \ln x] \\
& =x^{x^{2}} \cdot x^{\prime}[1+2 \ln x] \\
& =x^{x^{2}+1}[1+2 \ln x]
\end{aligned}
$$

(-unctions)

1) Exponentiate using $e^{l n}$
2) ploy the exponent in front of l w
3) Do deriv. with product rule
4) simplify.

$$
\begin{aligned}
f(x) & =x^{\sin x}=e^{\sqrt{\ln x}-\sin x}=e^{\sin x \cdot \ln x} \\
f^{\prime}(x) & =e^{\sin x \cdot \ln x} \cdot\left[\sin x \cdot \frac{1}{x}+\ln x \cdot \cos x\right] \\
& =x^{\sin x}\left[\frac{\sin x}{x}+x \cdot \frac{\ln x \cos x}{x \cdot 1}\right] \\
& =x^{\sin x}\left[\frac{\sin x+x \ln x \cos x}{x}\right] \leftarrow \\
& =\frac{x^{\sin x}}{x^{\prime}}[\sin x+x \ln x \cos x] \\
& =x^{\sin x-1}[\sin x+x \ln x \cos x] \leqslant
\end{aligned}
$$

Additional Examples

$$
\begin{aligned}
& \text { Change } \log x \text { to } \ln x \\
& f(x)=x^{2} \cdot \log _{3} x^{7}=x^{2} \cdot \frac{\ln x^{7}}{\ln 3}=\frac{1}{\ln 3} \cdot x^{2} \cdot \ln x^{7} \\
& f^{\prime}(x)=\frac{1}{\ln 3}\left[x^{\frac{1}{2}} \cdot \frac{1}{x^{7}} \cdot 7 x^{6}+\ln x^{7} \cdot 2 x\right] \\
& =\frac{1}{\ln 3}\left[7 x+2 x \ln x^{7}\right] \\
& =\frac{x}{\ln 3}\left[7+2 \ln x^{2}\right] \\
& f(x)=\frac{7^{x^{2}} \sec \left(e^{5 x^{7}}\right)}{\ln \left(8^{\sin x}\right)} \\
& f^{\prime}(x)=\frac{\ln \left(8^{\sin x}\right) \cdot\left[7^{x^{2}} \cdot \sec \left(e^{5 x^{7}}\right) \tan \left(e^{5 x^{7}}\right) \cdot e^{5 x^{7}} \cdot 35 x^{6}+\sec \left(e^{5 x^{7}}\right) \cdot\right.}{\frac{\left.\ln 7 \cdot 7^{x^{2}} \cdot 2 x\right]-7^{x^{2}} \sec \left(e^{5 x^{7}}\right) \cdot \frac{1}{8^{\sin x}} \cdot \ln 8 \cdot 8^{\sin x} \cdot \cos x}{\left[\ln \left(8^{\sin x}\right)\right]^{2}}}
\end{aligned}
$$

Additional Examples

$$
\begin{gathered}
f(x)=\frac{7^{x^{2}} \sec \left(e^{5 x^{7}}\right)}{\ln \left(8^{\sin x}\right)} \\
f^{\prime}(x)=\frac{\ln \left(8^{\sin x}\right) \cdot\left[7^{x^{2}} \cdot \sec \left(e^{5 x^{7}}\right) \tan \left(e^{5 x^{7}}\right) \cdot e^{5 x^{7}} \cdot 35 x^{6}+\sec \left(e^{5 x^{7}}\right) \cdot\right.}{} \frac{\left.\ln 7 \cdot 7^{x^{2}} \cdot 2 x\right]-7^{x^{2}} \sec \left(e^{5 x^{7}}\right) \cdot \frac{1}{8^{\sin x}} \cdot \ln 8 \cdot 8^{\sin x} \cdot \cos x}{\left[\ln \left(8^{\sin x}\right)\right]^{2}}
\end{gathered}
$$

