

Proving Differentiability

1) $f(a)$ is defined.
2) $\lim _{x \rightarrow a} f(x)$ exists.
3) $f(a)=\lim _{x \rightarrow a} f(x)$
4) $f^{\prime}(a)^{-}=f^{\prime}(a)^{+}$

i) $f(4)=\sqrt{4}=2$
5) $\lim _{x \rightarrow 4^{-}} 6-x=64=2$
$\lim _{x \rightarrow 4^{+}} \sqrt{x}=\sqrt{4}=2$
$\lim _{x \rightarrow 母^{+}} f(x)=2$
6) $f(4)=\lim _{x \rightarrow \infty} f(x)$

Continuous
4)

$$
\begin{aligned}
& f^{\prime}(4)^{-}=-1 \\
& f^{\prime}(4)^{+}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}=\frac{1}{2 \sqrt{4}} \\
& f^{\prime}(4)^{-} \neq f^{\prime}(4)^{+}
\end{aligned}
$$

not differentiable

List

* A derivative repuesents.....
* Ist definition of doriv $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
* and " " " $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
* Write deriv. of 6 tria func.

$$
\begin{aligned}
& f(x)=\cos ^{8}\left(4 x^{2}-3 x^{7}\right)=\left(\cos \left(4 x^{2}-3 x\right)^{7}\right)^{8} \\
& g(x)=\cos \left(4 x^{2}-3 x^{2}\right)^{8}
\end{aligned}
$$

