PRECALC FORMULAS **APPLICATIONS OF EXPONENTIAL FUNCTIONS**

Compound Interest Exponential Growth (Business/Human Pop.) A = final amount $A = P\left(1 + \frac{r}{n}\right)^{nt}$ N =final Amount $N = N_0 \left(1 \pm r\right)^t$ P = principal $N_o =$ initial Amount r = interest rate r = growth/decay raten = number of times t = timeCompounded continuously compounded in a year $A = Pe^{rt}$ t = time

Continuous Growth (Nature) Newton's Law of Cooling $u = T + (u_0 - T)e^{kt}$ u = final temperature of object $N = N_o e^{kt}$ N =final amount u_0 = initial temperature of object N_0 = initial amount T = temperature of surrounding air k = constant of growth/decayk = rate of coolingt = timet = time

PRECALC FORMULAS **APPLICATIONS OF EXPONENTIAL FUNCTIONS**

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

 $A = Pe^{rt}$

A = final amount P = principalr = interest rate n = number of times Compounded continuously compounded in a year

t = time

Exponential Growth (Business/Human Pop.)

 $N = N_0 \left(1 \pm r\right)^t$

N =final Amount N_{o} = initial Amount r = growth/decay ratet = time

Continuous Growth (Nature)

 $N = N_o e^{kt}$ N =final amount N_0 = initial amount k = constant of growth/decayt = time

Newton's Law of Cooling

$u = T + (u_0 - T)e^{kt}$	u = final temperature of object
	$u_0 = $ initial temperature of object
	T = temperature of surrounding air
	k = rate of cooling
	t = time