Expowemthl Fucgnons

$$
\begin{aligned}
& \frac{\left(a^{2} b^{3}\right)\left(a^{-5} b^{2}\right)^{3}}{a^{-4} b^{2}} \\
& \frac{\left(a^{2} \cdot b^{3}\right)\left(a^{-15} b^{6}\right)}{a^{-4} b^{2}}\left(\begin{array}{l}
7^{-2}=\frac{1}{7^{2}}=\frac{1}{49} \\
\sqrt[5]{a^{2}}=a^{2 / 5}
\end{array}\right. \\
& \frac{a^{-15} b^{-2-2}}{a^{-4^{4} a^{2}}}{\frac{b^{7}}{a^{4}}}_{a^{4}} \\
& \begin{array}{l}
\left(4^{-3 / 2}+2^{-1}\right)^{-1}(x+4)^{2} \\
\left(\frac{1}{\sqrt[3]{4^{2}}}+\frac{1}{2^{1}}\right)^{-1} \\
\left(\frac{1}{2^{3}}+\frac{1}{2}\right)^{-1} \\
\left(\frac{1}{8}+\frac{1}{2}\right)^{-1} \\
\left(\frac{1}{8}+\frac{4}{8}\right)^{-1}
\end{array} \\
& \left(\frac{5}{8}\right)^{-1} \\
& =\frac{8}{5}
\end{aligned}
$$

Exponential Functions $<$ constant base

$$
y=b^{x} \quad b>
$$

$$
y=2^{x}
$$

Domain: $(-\infty, \infty)$
Thane

$$
\begin{aligned}
&\left(3^{-2}\right)^{3 x}=\left(\sqrt[4]{3^{3}}\right)^{x+3} \\
& 3^{-6 x}=\left(3^{3 / 4}\right)^{x+3} \\
& 3^{-6 x}=3^{\frac{3}{4 x}+\frac{2}{4}} \\
& 4\left[\begin{array}{ll}
6 x & =\frac{3}{4} x+\frac{9}{4} \\
-24 x & =3 x+9 \\
-\frac{27 x}{-27} & =-9 \\
x & =-\frac{1}{3}
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
P=\left(1+\frac{1}{n}\right)^{n} \approx 2.718 & \text { Leonard Euler } \\
n=1 & \left(1+\frac{1}{1}\right)^{1}=2 & \text { (Oiler) } \\
n=2\left(1+\frac{1}{2}\right)^{2}=2.25
\end{array}\right) \quad \begin{gathered}
\text { nature number } \\
n=3
\end{gathered} \quad \begin{gathered}
\text { n.37 } \\
n=4
\end{gathered}
$$

$$
\begin{aligned}
& \text { Compound intrest } A=P e^{r-t} \\
& A=p\left(1+\frac{r}{n}\right)^{n t} \\
& \text { Expornential Grouth } \\
& N=N_{0}(1 \pm r)^{t} \\
& n=H \text { of times } \\
& \begin{array}{c}
\text { companded } \\
\text { inales }
\end{array} \\
& \text { mortily } n=12 \\
& \text { Navientinuons Gruth } \\
& q=q_{0} e^{k t}
\end{aligned}
$$

