Special Derivapuas
Implicit Differentiation

Explicit

$$
* y=3 x^{2}+7 x-4
$$

Find $\left.\frac{d y}{d x}\right)^{\text {"normal" }} y^{2}+x^{3}+y^{3}=5$

$$
\begin{gathered}
\left(3 x^{2}+7 x-y\right)^{2}+x^{3}+\left(3 x^{2}+2 x-4\right)^{3}=5 \\
2\left(3 x^{2}+7 x-4\right)^{\prime} \cdot(6 x+7)+3 x^{2}+3\left(3 x^{2}+7 x-4\right)^{2} \cdot(6 x+7)=0 \\
\rightarrow 2 y^{\prime} \cdot \frac{d y}{d x}+3 x^{2}+3 y^{2} \cdot \frac{d y}{d x}=0 \\
2 y \frac{d y}{d x}+3 x^{2}+3 y^{2} \frac{d y}{d x}=0 \\
2 y \frac{d y}{d x}+3 y^{2} \frac{d y}{d x}=-3 x^{2} \\
\frac{d y}{d x}\left(2 y+3 y^{2}\right)=-3 x^{2} \\
\frac{d y}{d x}=\frac{-3 x^{2}}{2 y+3 y^{2}}
\end{gathered}
$$

Implicit

$$
y^{2}+3 x y+7=2-5 y
$$

* Cannot express y in terms of

$$
\frac{d y}{d x}=6 x+7
$$

* multiple variables.

Find $\frac{d y}{d x}$.

$$
\left(3 x^{2 / 2} y^{2}\right)+4 y^{5}=6 \sin y+8 x^{5}
$$

$$
\begin{aligned}
3 x^{2} \cdot 2 y \frac{d y}{d x}+y^{2} \cdot 6 x+20 y^{4} \frac{d y}{d x} & =6 \cos y \frac{d y}{d x}+40 x^{4} \\
6 x^{2} y \frac{d y}{d x}+6 x y^{2}+20 y^{4} \frac{d y}{d x} & =6 \cos y \frac{d y}{d x}+40 x^{4} \\
\frac{d y}{d x}\left[6 x^{2} y+20 y^{4}-6 \cos y\right. & =40 x^{4}-6 x y^{2} \\
\frac{d y}{d x} & =\frac{40 x^{4}-6 x^{2} y}{6 x^{2} y+20 y^{4}-6 \cos y}
\end{aligned}
$$

Find the eq. of the tangent line at $(1,0)$.

$$
\begin{aligned}
& m=\frac{20(1)^{4}-3(1)^{2}(0)}{3(1)^{2}(0)-10(0)^{4}-3 \cos 0}=\frac{20-0}{0-0-3}=\frac{20}{3} \\
& y-0=-\frac{20}{3}(x-1) \\
& y=-\frac{20}{3} x+\frac{20}{3}
\end{aligned}
$$

Find $\frac{d a}{d p \leftarrow \text { neal }} 3 r^{7}+6 a^{5}-4 p=p^{7}$

$$
\begin{array}{r}
2 \operatorname{lr}^{6} \frac{d r}{d p}+30 a^{4} \frac{d a}{d p}-4=7 p^{6} \\
30 a^{4} \frac{d a}{d p}=7 p^{6}+4-21 r^{6} \frac{d r}{d p} \\
\frac{d a}{d p}=\frac{7 p^{6}+4-21 r^{6} \frac{d r}{d p}}{30 a^{4}}
\end{array}
$$

Find $\frac{d y}{d t}$.

$$
\begin{aligned}
& 4 x^{2}+2 y^{5}=\cos x \\
& 8 x \frac{d x}{d t}+10 y^{4} \frac{d y}{d t}=-\sin x \frac{d x}{d t} \\
& 10 y^{4} \frac{d y}{d t}=(-8 x-\sin x) \frac{d x}{d t} \\
& \frac{d y}{d t}=\frac{(-8 x+\sin x) \frac{d x}{d t}}{10 y^{4}}
\end{aligned}
$$

