LOGARITYMS - inesgris of expatite functions

$$
\begin{gathered}
y=b^{x} \\
b>0, b \neq 1 \\
\text { Domain: } \\
(-\infty, \infty) \\
\text { Range: }(0, \infty) \\
y=b^{x} \\
x=b^{y} \\
\log _{b} x=y
\end{gathered}
$$

$$
\begin{aligned}
& y=\log _{b} x \\
& b>0, b \neq 1
\end{aligned}
$$

Domain: $(0, \infty)$
Range $(-\infty, \infty)$

John Napier - find distances to planet.
2,300,000
$2.3 * 10^{6}$
$\log _{12}(2.3) \log _{6} 10$
6. \qquad

Natural Logs

$$
\log _{e} x=\ln x
$$

Common Logs

$$
\log _{10} x=\log x
$$

$\ln x$

$$
\begin{aligned}
& \begin{array}{ll|l}
y=2^{x} & 0 & 1 \\
& 0 & 2 \\
& 1 & 4 \\
3 & 8 \\
& 3 & 8
\end{array} \\
& y=\log _{2} x \\
& \begin{array}{l|l}
\hline 1 & 0 \\
2_{8} & 1 \\
2 & 2 \\
3
\end{array} \\
& y=-\ln (x+4)+2 \\
& \begin{array}{l|l}
\hline 1 & 0 \\
2.7 \\
7.4 \\
-1 \\
\hline & -2 \\
& -5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evalyat. } \log _{9} 81=\log _{9} 9^{2}=2 \\
& \log _{6} \frac{1}{36}=\log _{96} 6^{-2}=-2 \\
& \log _{7} \sqrt[3]{49}=\log _{7} \sqrt[5]{7^{2}}=\log _{7} 7^{2 / 5}=2 / 5 \\
& \log _{10} 1000=\log _{10} 10^{3}=3 \\
& \ln e^{3178}=3178 \\
& \ln \frac{1}{\sqrt{e^{3}}}=\ln e^{-3 / 7}=-3 / 7 \\
& e^{\ln 8^{2}}=e^{\ln 8^{2}}=64
\end{aligned}
$$

Solving log Equations
Properties of Logs

$$
\begin{aligned}
& \log _{b} m+\log _{b} n=\log _{b}(m \cdot n) \\
& \log _{b} m-\log _{b} n=\log _{b}\left(\frac{m}{n}\right) \\
& \log _{b} m^{i}=p \cdot \log _{b} m
\end{aligned}
$$

$$
\begin{array}{l|l}
\text { Exp. Form } & \begin{array}{l}
\text { Log Form } \\
y=b^{x}
\end{array} \\
x=\log _{p} y
\end{array}
$$

$$
\begin{aligned}
& \log _{7}(x-2)+\log _{7}(2 x-3)=2 \log _{7} x \quad x=1,6 \\
& \log _{7}(x-2)(2 x-3) \\
& \log _{7}\left(2 x^{2}-7 x+6\right)=\log _{7} x^{2} \\
& \text { Expowentifle! } \\
& 7^{\log _{7}\left(2 x^{2}-7 x+6\right)}=7^{\log _{7} x^{2}} \\
& 2 x^{2}-7 x+6=x^{2} \\
& x^{2}-7 x+6=0 \\
& (x-6)(x-1)=0 \\
& x=\times \sqrt{6} \\
& 4^{\log _{4} 8}=4^{x} \\
& 8=4^{x} \\
& 2^{3}=2^{2 x} \\
& 3=2 x \\
& 3 / 2=x
\end{aligned}
$$

