More L'Hopital's RuLE

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x^{2} \cdot \ln x=0 \cdot-\infty \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}=\frac{-\infty}{+\infty} \\
& \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{2}{x^{3}}} \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot \frac{x^{22}}{-2}=\frac{0}{-2} \\
& =0
\end{aligned}
$$

$\frac{\text { Indeterminate forms }}{\frac{0}{0}, \frac{\infty}{\infty}}$

$$
\begin{array}{cc}
0 . \infty, & \infty-\infty \\
0^{0}, & \infty, \infty \\
\hline
\end{array}
$$

must rearrange into fraction form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}\left(\csc x-\frac{1}{x}\right)=\infty-\infty \\
& \lim _{x \rightarrow 0^{+}}\left(x \cdot \frac{1}{\sin x}-\frac{1}{x} \cdot \sin x\right. \\
& \lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x \sin x}=\frac{0-0}{0.0} \\
& \lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{x \cdot \cos x+\sin x \cdot 1}=\frac{1-1}{0.1+0.1}=\frac{0}{0} \\
& \lim _{x \rightarrow 0^{+}} \frac{\sin x}{x \cdot-\sin x+\cos x \cdot 1+\cos x} \\
& \lim _{x \rightarrow 0^{+}} \frac{\sin x}{-x \sin x+2 \cos x}=\frac{0}{0.0+2 \cdot 1}=\frac{0}{2}=
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{1 / x}=\infty^{\frac{1}{0}}=\infty^{0} \\
& \begin{array}{l}
\lim _{x \rightarrow \infty} e^{\ln x^{4 x}} \\
\lim _{x \rightarrow \infty} e^{\frac{1}{x} \ln x}
\end{array} \\
& \lim _{x \rightarrow \infty} \frac{\ln x}{x}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\frac{1}{\infty}=0 \\
& =e^{0}=1 \\
& \text { 1) Rewrite as } e^{\ln x^{f(x)}}=e^{f(x) \cdot \ln x} \\
& \text { 2) Rearrange exponent to } \\
& \text { frackom form as } \frac{0}{0} \text { or } \frac{\infty}{\infty} \\
& \text { 3) Perform L'Hupital's Rule } \\
& \text { 4) Wite answer as } e^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\left(1+\frac{1}{0}\right)^{\infty}=1^{\infty} \\
& \lim _{x \rightarrow \infty} e^{x \ln \left(1+\frac{1}{x}\right)} \\
& \lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{x^{-1}}=\frac{\ln \left(1+\frac{1}{\infty}\right)}{\frac{1}{\infty}}=\frac{0}{0} \\
& \lim _{x \rightarrow \infty} \frac{1}{\left(1+\frac{1}{x}\right)} \frac{-x^{2}}{x} \\
& =\frac{1}{1+\frac{1}{\infty}}=\frac{1}{1+0}=1 \\
& =e^{1}=e
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}(\csc x)^{\sin x}=\infty^{0} \\
& \lim _{x \rightarrow 0^{+}} e^{\sin x \ln (\csc x)} \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln (\csc x)}{\csc x}=\frac{\infty}{\infty} \\
& \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\csc x} \cdot \csc +\cot x}{1-\operatorname{cscot} x}= \\
& =\frac{1}{\infty}=0 \\
& e^{0}=1
\end{aligned}
$$

