

Thursday, Oct. 6

Sec. 3.8 p. 200
$7,9,13,23,25 b, 29 b, 45, a, b, c$ at right
a) Find $\frac{d y}{d x} \cdot x^{2}=\frac{\cot y}{1+\csc y}$
b) Find $\frac{d x}{d y} \cdot 3 x^{5} y^{2}+y^{3}=4 x^{5}-5$
(Hint to a: You will need to use a trig identity to get this one fully simplified!)
c) Find $\frac{d r}{d p} \cdot 6 p^{3}-4 r^{8}=7+\frac{5}{w^{2}}$

Tuesday, Oct. 11

Sec. 3.7 p. 192
$48,59,60,73$
Sec. 3.9 p. 211
$10,15,22,23,27,44,45,47$, 49, 55, a, b
Sec. 3.8 p. 200
17
Find $\frac{d y}{d x}$. a) $y+\ln (x y)=1$
b) $y=x^{2} \log _{2}(3-2 x)$ (Do not simplify.)

Thursday, Oct. 13

Sec. 3.10 p. 221
$7,11,14,18,20,22,27$
Sec. 4.7 p. 307
$15,27,30,35,40,41,43,44$

Monday, Oct. 17
Sec. 4.7 pp. 307-308
$46,47,49,51,53,55,56,57$,
$85,88,92,97,99$

Wednesday, Oct. 19

Review Derivatives of Special Functions \& L'Hopital's Rule

Friday, Oct. 21

Derivatives of Special $\mathcal{F}_{\text {unctions }} \mathrm{J}_{\text {est }}$

