CALCULUS JOURNAL DERIVATIVES OF SPECIAL FUNCTIONS

1.	a) Implicit differentiation must be used when		
	b) :	or when If you are finding $\frac{dh}{dm}$ using implicit differentiation in a relation which contains the variables h, k ,	
		m, and p, the variable which should be treated as "normal" is while $\frac{d?}{d}$ should be added	
		when	
2.	(a)	The domain of $f(x) = \ln x$ is To find the domain of the natural log of a quantity	
		you must	
	(b)	To find the derivative of a $log_b x$ function, you must first	
3.	Wı	rite a set of steps for finding the derivative of a variable raised to a variable power.	
4.	a)]	Expressions such as $\frac{0}{0}$ or $\frac{\infty}{\infty}$ are considered to be because	
	b)	Why are expressions such as $0 \cdot \infty$ or 1^{∞} considered indeterminate?	
	c)	L'Hopital's Rule can only be used when the indeterminate forms or are present.	
	d)	If L'Hopital's Rule is applied to a function and the new function also results in an indeterminate	
		form, you should	
	e)	The limit of a function that results in $0 \cdot \infty$ or $\infty - \infty$ is found by first	
	f)	The limit of a function which results in an expression such as 0^0 , ∞^0 , or 1^∞ must be found by	
	,		

- 5. Important Rules, Formulas, Etc.
 - a) Change of base formula for logarithms

b)
$$\frac{d}{dx} \ln x$$

c)
$$\frac{d}{dx}e^x$$

d)
$$\frac{d}{dx}a^x$$

e) Derivatives of the 6 inverse trig functions

f)
$$\lim_{x \to +\infty} e^x = \underline{\qquad} \lim_{x \to -\infty} e^x = \underline{\qquad} \lim_{x \to +\infty} \ln x = \underline{\qquad} \lim_{x \to 0^+} \ln x = \underline{\qquad}$$