SQuare Roots

$$
\begin{aligned}
& \text { Multiplication }=2 \sqrt{3}(3+\underline{4 \sqrt{3}})(5-2 \sqrt{3}) \\
& \sqrt{2} \cdot \sqrt{6}=\sqrt{12}=2 \sqrt{3} \\
& 3 \sqrt{6} \cdot 5 \sqrt{3}=15 \sqrt{s_{3}} \sqrt{\text { d. } \cdot 2} \\
& =45 \sqrt{2} \\
& \sqrt{2.4} \cdot \sqrt{72}= \\
& =2 \sqrt{6} \cdot 6 \sqrt{2} \\
& =12 \sqrt{12} \\
& =24 \sqrt{3} \\
& \sqrt{3} \cdot \sqrt{3}=\sqrt{9}=3 \\
& \sqrt{5} \cdot \sqrt{5}=\sqrt{25}=5 \\
& \sqrt{17} \cdot \sqrt{17}=17 \\
& \sqrt{251} \cdot \sqrt{251}=251
\end{aligned}
$$

Division

$$
\left.\begin{array}{r}
\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}-\sqrt{\frac{21}{7}} \\
\sqrt{\frac{36}{25}}=\frac{\sqrt{36}}{\sqrt{25}}=\frac{6}{5} \\
\sqrt{\frac{20}{81}}=\frac{\sqrt{20}}{\sqrt{81}}=\frac{2 \sqrt{5}}{9} \\
\frac{3 \sqrt{5}}{43}=\frac{\sqrt{5}}{3}
\end{array}\right\}
$$

More Rationalizing the Denom

$$
\frac{3+4 \sqrt{7}}{5-2 \sqrt{7}}\left(\frac{5}{(5}+2 \sqrt{7}\right) \in F \text { ORC: }
$$

$$
\begin{aligned}
& \text { multiply by the conjugate } \\
& \text { of the denom }
\end{aligned}
$$ of the denim!

$$
\frac{15+6 \sqrt{7}+20 \sqrt{7}+8.7}{25+40 \sqrt{7}-1081-4.7}
$$

$$
\frac{71+26 \sqrt{7}}{+3}=\frac{-28}{x} \frac{-26 \sqrt{7}}{3}
$$

Rationalizing the Denominator $\frac{-1}{2} \frac{1}{-2}-\frac{1}{2}$

$$
\begin{aligned}
& \frac{5}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=\frac{5 \sqrt{7}}{7} \\
& \begin{aligned}
& \sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}} \cdot \sqrt{2} \cdot \sqrt{2} \\
&=\frac{\sqrt{6}}{2} \\
& \sqrt{\frac{11}{12}}=\frac{\sqrt{11}}{\sqrt{12}}=\frac{\sqrt{11} \cdot \sqrt{3}}{2 \sqrt{3} \cdot \sqrt{3}} \\
&=\frac{\sqrt{33}}{6}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Conjugate? } \\
& \begin{array}{l}
\text { No } 4-2 \sqrt{3} \\
-4+2 \sqrt{3}
\end{array} \\
& -9-\sqrt{7} \text { yes }-9+\sqrt{7}
\end{aligned}
$$

Solve for x.

$$
\begin{array}{cc}
3 x^{2}+7=43 & \frac{2(x+6)^{2}}{2}=\frac{50}{2} \\
-7 & \sqrt{2} \\
\frac{3 x^{2}}{3}=\frac{36}{3} & \sqrt{(x+6)^{2}}=\sqrt{25} \\
\sqrt{x^{2}}=\sqrt{12} & x+6= \pm 5 \\
4 \cdot 3 & x=-6 \pm 5 \\
x= \pm 2 \sqrt{3} & x=-1 \text { OR }-11
\end{array}
$$

Imaginary Numbers Lena Euler

$$
\begin{aligned}
\sqrt{-1} & =i \\
\sqrt{-16} & =\sqrt{16 \cdot-1}=4 i \\
\sqrt{-81} & =9 i \\
\sqrt{-40} & =\sqrt{-1 \cdot 4 \cdot 10} \\
& =2 i \sqrt{10}
\end{aligned}
$$

