Curve Sketching
Mean Value Theorem

$$
m=\frac{f(b)-f(a)}{b-a}
$$

1) f is continuous on $[a, b]$
2) f is differentiable on $\left(a_{1}\right)$
3) $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Find point c.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x+2 \\
& 3 c^{2}-6 c+2=\frac{f(2)-f(0)}{2-0} \quad f(2)=8-12+4=0 \\
& 3 c^{2}-6 c+2=\frac{0-0}{2} \\
& 3 c^{2}-6 c+2=0 \\
& c=\frac{6 \pm \sqrt{36-4(3)(2)}}{2(3)} \\
& =\frac{6 \pm \sqrt{12}}{6}=\frac{6 \pm 2 \sqrt{3}}{6} \\
& =\frac{3 \pm \sqrt{3}}{3} \approx 1.6 \\
& \text { must } 4 \\
& {[0,2]}
\end{aligned}
$$

Curve SkETCHING

$$
f(x)=x^{4}-4 x^{3}+10
$$

1) Find inc v dec

$$
\text { 1) Find inc } \begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2}=0 \\
& \Rightarrow=4 x^{2}(x-3)=0 \\
& x=0,3 \leftarrow \text { critical } \\
& +.-+\cdot++ \\
& -1+1+3+4
\end{aligned}
$$

2) Concavity

$$
\begin{gathered}
f^{\prime \prime}(x)=12 x^{\frac{1}{2}-24 x=0} \\
\text { possible }=12 x(x-2) \\
\text { info pts. } x=0,2 \\
+\frac{+-1+1}{0,}+2
\end{gathered}
$$

$$
f(x)=3 x^{2 / 3}-x
$$

1) $f^{\prime}(x)=2 x^{-1 / 3}-1=0$

$$
\begin{gathered}
\frac{2}{\sqrt[3]{x}}=1 \cdot \sqrt[3]{x} \\
(2)^{3}=(\sqrt[3]{x})^{3}
\end{gathered}
$$

$$
8=x
$$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2}{\sqrt[3]{x}-1} \stackrel{\leftarrow}{-1 / 3-1} \\
& x 0
\end{aligned}
$$

2) $f^{\prime \prime}(x)=-\frac{2}{3} x^{-4 / 3} / 0$

To find critical pts.

1) $f^{\prime}(x)=0$
2) points of non-differentiabolity (specintical) pts) $f(a)$ is defined.

November 9, 2022

