Hypothesis Testing
Null Hypothesis: Ho Trying to disprove Alternative Hypothesis: $H_{a}$ - What you believe is lappenim

Testing airbags. Researchers believe they do not open properly.
$H_{0}$ : Airbags open property.
It a: Airbags do not open properly.
Developers believe hew paint dries more quickly.
Ho: New paint dries at the same rate or slower.
It: New pant dives faster.

Hypothesis Test

1) Define paranaters. (What numerical inf is needed.)
2) Set up $H_{0}+H_{a}$. (In terms of $H^{\prime}$ s using $\langle,>$ )
3) Set the criteria for the tot.
a) What Kind of distribution? (normal)
b) Set level of confidence. for $H_{0}$

$$
p<0.05 \text { (is } \% \text { con.) } p<0.01
$$

4) List sample evidence.
$n, \bar{x}, \sigma$ or $s, \sigma \bar{x}, Z^{x}$ (testatisiic)
5) Find probability. $(p=), z^{*}=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}$
6) If $p<\#$, then "Reject the $H_{0}$. If $p>\#$, then "Fail to Reject the $H_{0}$.

Millvale H.S. - Natural Test
National Test $\mu=50 \quad \sigma=10$
900 students $\bar{x}=51.1 \quad \delta=10$
Did Millvale students really do better?

1) Parameter: student test scores
2) $H_{0}: \mu=50(\leq)$

$$
\text { Ha: } \mu>50
$$

3) Criteria: Normal, $p<0.05 \quad p \neq$
4) 

$$
\begin{array}{ll}
\text { Criteria: Normal, } p<u .0 z \\
\begin{array}{ll}
n=900 & S=10
\end{array} & z^{*}=\frac{\bar{x}-\mu}{\sigma \bar{x}} \\
\frac{\bar{x}}{=}=51.1 & z_{\bar{x}}=\frac{s}{\sqrt{n}}=\frac{10}{\sqrt{900}}=0.333
\end{array}
$$

5) 


6) Reject the $\mathrm{H}_{0}$ - MHS students performed better than the national average.

Kelley Employment Agency $\mu=82 \sigma=8$
Brown Agency $n=36 \quad \bar{x}=79 \quad S=8$

1) Param: test scores
2) $H_{0}: \mu \neq 82 \longleftarrow$ two -tailed test $H_{a}: \mu=82$
3) Criteria; Normal; $p<0.05$
4) Sample evidence:

$$
\begin{aligned}
& \begin{array}{l}
n=36 \\
\frac{n}{x}=79 \quad s=8
\end{array} \quad \sigma_{\bar{x}}=\frac{8}{\sqrt{36}}=1.33 .3 \\
& \frac{n}{x}=79 \quad S=8 \quad z^{*}=\frac{\bar{x}-\mu}{\partial \bar{x}}=\frac{79-82}{1.333}=-2.25 \\
& \text { 5) } \\
& p=0.02 \mathrm{ff}
\end{aligned}
$$

6) Reject $H_{0}$; Brown test is as accaratat as Valley test.
