$$
\begin{aligned}
& \operatorname{coc}^{2} \theta \frac{d \theta}{d t}=\frac{d x}{d t} \\
& (\sec \pi / 3)^{2} \frac{d \theta}{d t}=-\frac{4}{5} \\
& (2)^{2} \frac{d \theta}{d t}=-\frac{4}{5} \\
& \frac{1}{4} f \quad \frac{d \theta}{d t}=-\frac{4}{5} \cdot \frac{1}{4} \\
& \frac{d \theta}{d t}=-\frac{1}{5} \mathrm{rad} / \mathrm{min}
\end{aligned}
$$

9

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
V & =\frac{1}{3} \pi\left(\frac{h}{4}\right)^{2} h \\
\frac{2}{8}=\frac{r}{h} \quad V & =\frac{1}{3} \pi h^{2} \cdot h \\
\frac{2 h}{16}=8 r \quad \frac{h}{4}=r \quad \frac{d}{d 6}[V & \left.=\frac{1}{48} \pi h^{3}\right] \\
\frac{d V}{d t} & =\frac{1}{16} \pi h^{2} \frac{d h}{d t} \\
-3 & =\frac{1}{16} \pi(5)^{2} \frac{d h}{d t} \\
\frac{16}{25 \pi}-3 & =\frac{25 \pi}{16} \frac{d h}{d t} \\
-\frac{48}{25 \pi} \frac{i n}{5} & =\frac{d h}{d t}
\end{aligned}
$$

