Semester Renew
Sets of Numbers

Significant Dits

$$
340300 \quad 0.00086540 \mathrm{~m}
$$

$5 \frac{\mathrm{~m}}{\min }$ to $\frac{\mathrm{cm}}{\mathrm{sec}}$

$$
\begin{aligned}
5 \frac{\mathrm{~m}}{\mathrm{~min}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{5 \cdot 10 \mathrm{t}}{6,0}=\frac{50}{6} & =\frac{25}{3} \frac{\mathrm{~cm}}{\mathrm{sk}} \\
& =8.33 \mathrm{sm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7) } \begin{aligned}
f(x) & =4 x^{2}-2 x \\
f(3) & =4(3)^{2}-2(3) \\
& =36-6
\end{aligned} \quad \begin{aligned}
6 / 6
\end{aligned} \quad\left[\frac{5}{2} x-7=\frac{2}{8}(x+4)\right] \\
& \begin{array}{ll}
=36-6 & 15 x-42=4(x+4) \\
=30
\end{array} \\
& 15 x-42=4 x+16 \\
& {\left[\begin{array}{cc}
2 & 3 \\
5 & -4
\end{array}\right]-2\left[\begin{array}{cc}
7 & 6 \\
-1 & -3
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & 3 \\
5 & -4
\end{array}\right]+\left[\begin{array}{cc}
-14 & -12 \\
2 & 6
\end{array}\right]} \\
& =\left[\begin{array}{cc}
-12 & -9 \\
7 & 2
\end{array}\right] \\
& +1-=\text { must have same }
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-14 & -14 \\
20 \\
20 & -14
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 7 x-9 y=56 \\
& m=-\frac{A}{B}=\frac{+7}{+4} \\
& \begin{array}{c|c}
\hline 8 & 0 \\
0 & -14
\end{array} \\
& x \text {-int }(8,0) \\
& y \operatorname{lint}(0,-14) \\
& \text { 12) } \\
& \left.\begin{array}{c}
x \\
(1974, \\
(199
\end{array}\right) \\
& \text { (1991,4.55) } \\
& \text { Slope-int } \\
& \text { point-shope } \\
& y=m x+b \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& \text { Writ the of. of the line } 1 \text { to } \\
& y=-3 x+1 \text { \& thrown }(-2,4) \text {. } \\
& m=-3 \quad y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{array}{l}
1 m=\frac{1}{3}
\end{array} \\
& y-4=\frac{1}{3}(x+2) \\
& \begin{array}{c}
y-4=\frac{1}{3} x+2 / 3 \\
+4
\end{array} \\
& y=\frac{1}{3} x+\frac{4}{3}
\end{aligned}
$$

Find slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Testing Posits $2 x-1=0$ $\begin{aligned} 2 x & =1 \\ x & =\frac{1}{2}\end{aligned}$ quatre each $=0$
2) Test intervals for $+1-$
3) Determine opma/clised circles
4) Shade solutions $\leq 0 \pm$ 5) Write solution

Abs. Value

$$
\begin{array}{r}
|5-2| x+3 \mid
\end{array}
$$

$$
\frac{-2|x+3|}{-2} \leq \frac{-8}{-2}
$$

$$
|x+3| \geq 4
$$

$x+3 \geq 4$ or $x+3 \leq-4$
$x \geq 1$ OR $x \leq-7$

1) Isolate the ats value
2) Write 4 solve 2 inequalities
3) Graph on t line to find final solution

GResior
Lass ThAD

