Semester Renew Day 2

$$
\begin{aligned}
& \frac{2 x}{d x} e^{2 x} \ln \left(\frac{2 y}{y}\right)+4 x^{3}=9-7 y^{2} \\
& e^{2 x} \cdot \frac{1}{2 y} \cdot 2 \frac{d}{d x}+\ln (2 y) \cdot e^{2 x} \cdot 3+12 x^{2}=-14 y \frac{d y}{d x} \\
& \frac{e^{2 x}}{y} \frac{d y}{d x}+2 e^{2 x} \ln (2 y)+12 x^{2}=-14 y \frac{d y}{d x} \\
& 2 e^{2 x} \ln (2 y)+12 x^{2}=\left(-\frac{e^{2 x}}{y}-\frac{14 y}{y}\right) \frac{d y}{d x} \\
& \frac{y}{-e^{2 x}-14 y^{2}}\left(2 e^{2} x \ln (2 y)+12 x^{2}\right)=\left(-e^{2 x} x y^{2}\right) \frac{d y}{d x} \\
& \frac{y\left(2 e^{2 x} \ln \left(2 y+12 x^{2}\right)\right.}{-e^{2 x}-14 y^{2}}=\frac{d y}{d x}
\end{aligned}
$$



L'fopital's

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \sin x^{\tan x}=0^{0} \\
& \lim _{x \rightarrow 0^{+}} e^{\sqrt{\tan x}(\sin x)^{-}} \\
& \lim _{x \rightarrow 0^{+}} \tan x \cdot \ln (\sin x) \\
& \lim _{x \rightarrow 0^{+}} \frac{\ln (\sin x)}{\cot x}=\frac{-\infty}{\infty} \\
& \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sin x} \cdot \cos x}{\csc ^{2} x} \\
& \lim _{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}-\frac{1}{\sin x}}{\sin ^{2} x} \\
& =1 \cdot 0
\end{aligned}
$$




