$$
\begin{aligned}
& \text { Vertex - Intersecting pt. } \\
& \text { Edge - Lines that compete } \text { vertices }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Deane of a vert ix }= \\
& \text { 4 of sedges es connected } \\
& \text { to the verelax }
\end{aligned}
$$

Parallel edges - comet the Same 2 vertices

What vertices are adjacent to the Cones Lu, Mangyman Kitchen

December 15, 2022

Paths $+C_{\text {circuits }}$
Euler Path

* Cross al very edge once * different start x end

Possible $=$ all even vertices ex copt for start lend

Euler circuit

* Cross every edge once * Same start tend point

Possible $=$ All even degrees

Hamilton Path

* pass through every vertex
* different stant/end
no known retrod to determine if its possible]
Hamilton Curevit
* pass through every vertex once
* Same start t end point

Euler path = No

Euler circuit =yes

$$
A, B, C, D_{1} A, C, S A
$$

Him path =yes D_{1}, A_{1}, C, E Ham crrcurt-No

Shortest Paths

* Weighted graph - edges have a numerical value
* Must use algonthm to find shortest path

Find shorlest path from A to Q. Breadth Fist Search Aguritim

Critical Paths

* directed graph
* the longest path between 2 vertices
* try to find the minimum time to complete a task

Frame $=4$
Roof $=5$

$$
\begin{aligned}
& \text { Electrical }=4 \\
& \text { Plumbing }=3 \\
& H V A C=
\end{aligned}
$$

Manufacturing a $C D$

$$
B-T-U-V-y-E
$$

