PoLyNOMIAL GRAPLS

Quadratic T lsadmg clef

$$
f(x)=x^{4}-4 x^{3}-9 x^{2}+16 x+20
$$ quartic

Degree $=$ highest power
Max \# of x-at = Degree y
Max \# of peaks/valley
$=$ Degree -1
End Behavior
odd degree = ends go in opposite directions even dequeue = end go In Same
 direction
$\underline{\text { Polynomial }}=$ many terms (one or more terms)

* Terms most be added or subtracted
* Exponents must be whole \#'s $0,1,2,3,4, \ldots$
* Coefficients are real \#'s
$P \quad 5 x^{8}-3 x^{5}+7 x^{4}-2 x+9 \leftarrow$ Degree $=8$
P $3 x^{2} y^{1}+9 x y^{3}+7 x-5$
No $\frac{2}{5 x^{2}}+3 x-1=\frac{2}{5} x^{-2}+3 x-1$
$P \quad \frac{4}{3} x^{7}-\sqrt{2} x^{8}+\frac{3}{5} x-4 \Leftarrow 8^{\text {th }}$ degree
No $\left(4 x^{7}-3\right)\left(5 x^{2}+9\right)$ - Nomult.

Name \qquad

POLYNOMIALS HANDOUT

For each function, determine if it is a polynomial and then state the degree, the name, and the leading coefficient.

1. $f(x)=-3 x+5 x^{3}-6 x+2$
2. $f(x)=9 x^{4}+8 x^{3}-6 x^{-2}-1$
3. $f(x)=3 x^{4}=2 x-\frac{5}{x}+9 x^{2}-7$
4. $f(x)=\frac{5}{3} x^{2}-\sqrt{7} x^{4}+8 x^{3}-\frac{1}{2}+x$

Match each function and graph.
E
5. $f(x)=-3 x^{2}+8 x-1$

B.

A
6. $f(x)=-x^{6}+x^{3}+4 x^{2}+2 x-1$

B 7. $f(x)=-2 x^{3}-3 x^{2}+7$
F
8. $f(x)=4 x-5$
9. $f(x)=2 x^{3}-5 x^{2}+7 x-2$
10. $f(x)=x^{3}-4 x^{2}-3 x+2$

B

11. $f(x)=9 x^{3}-4+x^{2}$
12. $f(x)=0.4 x^{2}-x+3$
13. $f(x)=x^{4}-4 x^{3}+x^{2}-6$
14. $f(x)=-3 x^{3}-8 x^{2}-x+1$
15. $f(x)=8-x$
16. $f(x)=-x^{4}-4 x^{3}+x^{2}+6 x-2$

D.

E.
F.

18.

For each Junction, identify (a) intervals where the function is increasing or decreasing, (b) coordinates of all relative maximums and minimums, and (c) coordinates of all absolute maximums and minimums.

Find the real zeros of each premial using your calculator. Round to hundredths.
21. $f(x)=x^{4}+2 x^{3}-x-1$
22. $f(x)=-x^{5}+9 x^{3}-9 x$

Polynomial operations

$$
\begin{aligned}
& \left(4 x^{3}+2 x^{7}+3 x-9\right)+\left(-x^{6}+7 x^{7}+4 x^{3}+8\right) \\
& -5 x^{7}-x^{6}+8 x^{3}+3 x-17 \\
& \frac{(2 x+3)(4 x-1)(x+5)}{\left(8 x^{2}-2 x+12 x-3\right)} \\
& \left(8 x^{2}+10 x-3\right)(x+5) \\
& \begin{array}{l}
\text { Spacial cases } \\
(4 x+3)(4 x-3) \\
16 x^{2}-16 x+12 x-9 \\
=16 x^{2}-9
\end{array} \\
& 8 x^{3}+80 x^{2}-3 x+40 \cdot x^{2}+90 x-15 \\
& =8 x^{3}+50 x^{2}+47 x-15 \\
& (3 x-7)^{2}=9 y^{2}+19 \\
& (3 x-7)(3 x-7) \\
& \begin{array}{l}
9 x^{2}-21 x-21 x+49 \\
9 x^{2}-42 x+49
\end{array} \\
& 9 x^{2}-42 x+49
\end{aligned}
$$

FACTORING
First step $=$ Pull out common factors
2 terms $=$ look for perfect squares or perfect cu les
$a^{2}-b^{2}=(a+b)(a-b) \leftarrow$ conjugate
$a^{2}+b^{2}=a^{2}+b^{2} \leqslant$ unfactorable
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

$$
\begin{aligned}
1^{3} & =1 \\
2^{3} & =8 \\
3^{3} & =27 \\
4^{3} & =64 \\
5^{3} & =125 \\
6^{3} & =216 \\
7^{3} & =343
\end{aligned}
$$

$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$

$$
x^{3}-64=(x-4)\left(x^{2}+4 x+16\right)
$$

3 terms - UNFOIL

$$
x^{2}+2 x-15
$$

$(x+5)(x-3)$
4 terms - Grouping
2 steps
$\left(3 x^{3}+15 x^{3}(-2 x-10)\right.$

1) Group each par of terms d pull out the common factor
2) $3 x^{2}\left(\frac{x+5}{5}\right)=2(x+5)$
3) Pull out the Common quantity
4) $(x+5)\left(3 x^{2}-2\right)$

$$
\begin{aligned}
& 10 x^{3}+5 x^{2}-40 x-20 \\
& \left.5\left(\left(2 x^{3}+x\right)^{2}=8 x-4\right)\right) \longleftarrow 4 \text { teims! } \\
& \text { 1) } 5\left[x^{2}(2 x+1)-4(2 x+1)\right] \\
& \text { 2) } 5(2 x+1)\left[x^{2}-4\right] \leftrightarrows \text { perfet suares! } \\
& 5(2 x+1)(x+2)(x-2)
\end{aligned}
$$

