Vertical Rectilinear Motion

$$
\begin{aligned}
& h=\frac{1}{2} a t^{2}+v_{0} t+s_{0} \\
& h=\frac{1}{2}(-98) t^{2}+50 t+3 \\
& h=-4.9 t^{2}+50 t+3 \\
& v=-9.8 t+50 \\
& a=-9.8
\end{aligned}
$$

$$
a=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a=-32 \mathrm{f} / \mathrm{s}^{2}
$$

$\underset{v=}{t=}$ How high will he go?

$$
\begin{aligned}
0 & =-9.8 t+50 \\
9.8 t & =50 \\
t & \approx 5.102 \mathrm{sec} \\
h & =-9.8(5.1)^{2}+50(5.1)+3 \\
& \approx 130.55 \mathrm{~m}
\end{aligned}
$$

How fast will be be moving when be is 10 m off the ground.

$$
\begin{aligned}
10 & =-4.9 t^{2}+50 t+3 \\
\partial & =-4.9 t^{2}+50 t-7 \\
t & =\frac{-50 \pm \sqrt{50^{2}-4(-4.9)(-7)}}{2(-4.9)} \\
t & =10.06 \mathrm{sec} \\
V & =-9.8(10.06)+50 \\
& \approx-48.58 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Neutn's Metiod

$$
\begin{aligned}
& f(x)=x^{3}-3 x-1 \\
& 0=x^{3}-3 x-1 \\
& m=f^{\prime}(x) \\
& \text { point }=\left(x_{n}, f\left(x_{n}\right)\right) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right) \\
& 0-f\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right) \\
& \frac{-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x-x_{n} \\
& x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x
\end{aligned}
$$

Puipose: Solve any ofuation

$$
\begin{aligned}
& t^{2}=\frac{4 \pi^{2}}{G m}\left(r^{3}\right) \quad r=5.8 \times 10^{10} \mathrm{~m} \\
& m=1.99 \times 10^{3} \mathrm{~kg} \\
& t^{2}=\frac{4 \pi^{2}}{\left(1.99 \times 10^{3}\right)}\left(5.8 \times 10^{10}\right)^{3}
\end{aligned}
$$

