| Name_ |
|-------|
|-------|

## ALGEBRA II JOURNAL Exponents and Roots

| 1. | (a) A function is                                                                                                                                                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (b) You can determine whether the <i>graph</i> of a relation is a function by                                                                                                  |
| 2. | (a) An inverse function is created by                                                                                                                                          |
|    | (b) Given the <i>graph</i> of the <i>original</i> function, you can determine whether its inverse will be a function by                                                        |
| 3. | (a) Given the <i>graphs</i> of two relations, you can determine if they are inverses of each other by                                                                          |
|    | (b) Given the <u>equations</u> of two relations, you can determine if they are inverses of each other by                                                                       |
| 4. | When working with expressions with exponents, you change the base.                                                                                                             |
| 5. | Variables or numbers with negative exponents $(x^{-3} \text{ or } 2^{-1})$ should be moved                                                                                     |
|    | while variables or numbers in the denominator of a fraction                                                                                                                    |
|    | with negative exponents $\left(\frac{3}{y^{-5}} \text{ or } \frac{1}{6^{-2}}\right)$ should be moved to                                                                        |
| 6. | When working with a fraction raised to a negative power $\left[\operatorname{such}\operatorname{as}\left(\frac{2}{y^2}\right)^{-3}\right]$ , the easiest way to                |
|    | deal with the negative power is                                                                                                                                                |
| 7. | Numbers expressed in <u>scientific notation</u> should have a negative exponent if the number is                                                                               |
| 8. | When dividing numbers in scientific notation, all terms must be moved                                                                                                          |
| 9. | (a) If the Even-Even-Odd rule for simplifying radicals is true, you should add an                                                                                              |
|    | to an exterior variable which has an even, an even,                                                                                                                            |
|    | and an odd                                                                                                                                                                     |
|    | (b) Fill in numbers for the exponents in the problem below so that <i>x</i> would NOT need an absolute value, but <i>y</i> would need an absolute value in the final solution. |
|    | $\sqrt{x^{\lfloor \cdot \rfloor}y^{\lfloor \cdot \rfloor}} \cdot \sqrt{x^{\lfloor \cdot \rfloor}y^{\lfloor \cdot \rfloor}}$                                                    |
| 10 | . To graph a square root or cube root, the T-table for $x^2$ or $x^3$ is altered by                                                                                            |

- 11. (a) An exponent written as a fraction is called a \_\_\_\_\_\_ exponent.
  - (b) The expression  $b^{\frac{x}{y}}$  can also be written as \_\_\_\_\_
- 12. Before you can multiply two radicals with different indices (such as  $\sqrt[3]{x} \cdot \sqrt[5]{x}$ ) together, you must \_\_\_\_\_

13. An expression with one radical inside another radical can be simplified as

$$\begin{pmatrix} m \sqrt{n} \sqrt{x} \\ \sqrt{n} \sqrt{x} \end{pmatrix} =$$
\_\_\_\_\_

14. When solving an equation containing **TWO** square roots:

- (a) The first step is to \_\_\_\_\_
- (b) In the second step you must square an expression such as  $(\sqrt{x+3}-2)^2$  by \_\_\_\_\_.
- (c) The last step of the problem is \_\_\_\_\_\_.
- 15. (a) An expression is in quadratic form if \_\_\_\_\_\_

(b) If an equation is in quadratic form, you should try to solve it by \_\_\_\_\_

using the exponent on the \_\_\_\_\_ term.

16. Power regression can be used to fit a curve to data which is shaped like vertical or horizontal \_\_\_\_\_\_ and \_\_\_\_\_.

17. List the following rules, facts, or formulas.

a) List the six rules of exponents.

b) Sketch the graph of each of the following:  $y = x^2$ ,  $y = x^3$ ,  $y = \sqrt{x}$ ,  $y = \sqrt[3]{x}$ . Show the standard *T*-table for each.

