Volume


$$
V=l w h
$$

$$
V=(4-2 x)(2.5-52 x) x
$$

$$
V=\left(10-8 x-5 x+4 x^{2}\right) x
$$

$$
V=\left(4 x^{2}-13 x+10\right) x
$$

$$
* V=4 x^{3}-13 x^{2}+10 x
$$

$$
V^{\prime}=12 x^{2}-26 x+10
$$

$$
=2\left(6 x^{2}-13 x+5\right)
$$

$$
0=2(2 x-1)(3 x-5)
$$

$$
x=1 / 2 \quad x=5 / 3
$$

1


Maximize Volume.

$$
V=x^{2}\left(\frac{63}{x}-\frac{7}{12} x\right)
$$

$$
\forall V=63 x-\frac{7}{12} x^{3}
$$

$$
V^{\prime}=63-\frac{7}{4} x^{2}=0
$$

$$
\frac{4}{7} \cdot 6^{93}=\frac{4}{4} x^{2}-\frac{4}{3}
$$

$$
\begin{aligned}
& 136=x^{2} \\
& \$ 6=x
\end{aligned}
$$

$$
h=\frac{63}{6}-\frac{7}{12}(6)
$$

$$
=\frac{21}{2}-\frac{7}{2}=\frac{14}{2}=7
$$

$$
\begin{aligned}
& V=x \cdot x \cdot h=x^{2} h \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& x:(0, \sqrt{108}) \\
& \begin{array}{l}
\lim _{x \rightarrow 0} 63 x-\frac{7}{12} x^{3}=0 \\
\lim _{x \rightarrow \sqrt{04}} 63 x-\frac{7}{\sqrt{2}} x^{2}=0
\end{array} \\
& v(6)=252 \quad 6 \\
& 6^{\prime} \times 6^{\prime} \times 7^{1}
\end{aligned}
$$



$$
V=16 \pi i i^{3}
$$

Bottom costs three as much as sides

$$
\begin{aligned}
& C=2 \pi r^{2}+2 \pi r\left(\frac{16}{r^{2}}\right) \\
& C=2 \pi r^{2}+\frac{32 \pi}{r}
\end{aligned}
$$

Minimize Cost

$$
\left.\begin{array}{rl}
C=2\left(\pi r^{2}\right)+ & 2 \pi r h \\
\pi r^{2} h & =16 \pi \\
h & =\frac{16 \pi}{\pi r^{2}}=\frac{16}{r^{2}}
\end{array}\right)
$$

$$
(0, \infty)
$$

$924 \frac{\text { trees }}{\text { acre }}-600$ apples/tree


$$
\begin{aligned}
& A=(24)(600) \\
& A=(H \text { of applos } 1 \text { trees })(\# \text { of tras/aure }) \\
& A=(600-12 x)(24+x), \\
& A=14400+600 x-288 x-12 x^{2} \\
& A=14400+312 x-12 x^{2} \quad[0,50]^{2}
\end{aligned}
$$

