Rational Expunewts/secunws Racrin

 GevationsRule 6: $\sqrt[n]{a^{m}}=a^{m / n}$

$$
\sqrt[5]{x^{2}}=x^{2 / 5}
$$

$$
\begin{gathered}
\text { 化如y } \sqrt[3]{x^{1}} \cdot \sqrt[3]{x} \\
x^{\frac{1}{3}} \cdot x^{\frac{1}{5}}
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt[12]{a^{9} b^{3}} \\
= & \sqrt[12]{a^{4}} \\
= & a^{13} b^{11}
\end{aligned}
$$

$$
\begin{aligned}
& =x^{\frac{5}{15}} \cdot x^{\frac{3}{15}} \\
& =x^{8 / 15}=\sqrt[15]{x^{8}}
\end{aligned}
$$

$$
a \sqrt[12]{a b^{\prime \prime}}
$$

EVALUATE. $\leftarrow \underset{\substack{\text { Answeris } \\ a \neq}}{\substack{2 \\ 3}}$

$$
\begin{aligned}
& 8^{1 / 3}=\sqrt[3]{8^{1}}=2 \\
& 81^{-1 / 2}=\frac{1}{81^{1 / 2}}=\frac{1}{\sqrt[2]{81^{1}}}=\frac{1}{9} \\
& 25^{3 / 2}=\sqrt[2]{25^{3}}=5^{3}=125 \\
& \left(\frac{8}{125}\right)^{2 / 3}=\sqrt[3]{\left(\frac{8}{125}\right)^{2}=\left(\frac{2}{5}\right)^{2}=\frac{4}{25}} \\
& \left(\frac{49}{16}\right)^{-3 / 2}=\left(\frac{16}{49}\right)^{3 / 2}=\sqrt[2]{\left(\frac{16}{49}\right)^{3}}=\left(\frac{4}{7}\right)^{3}=\frac{64}{343}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify. } \\
& \frac{\text { Simpify }}{\sqrt[3]{\sqrt[3]{x^{7}}}}=\sqrt[5]{x^{7}} \sqrt[{\sqrt[m]{\sqrt{a}}}]{\sqrt{\sqrt{n}}}=\sqrt[n a]{a} \\
& \left(x^{7 / 5}\right)^{1 / 3}=x^{\sqrt[7]{1 / 5}} \sqrt[7]{\sqrt[3]{\sqrt[3]{x^{4}}}}=\sqrt[14]{x^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Quadratic Form } \\
& a x^{2}+b x+c \\
& x^{2}+2 x^{\prime \prime}-3=0 \\
& (x+3)(x-1)=0 \\
& \begin{aligned}
x+3 & =0 \quad x-1=0 \\
x & =-3 \quad x=1
\end{aligned} \\
& x=-3 \quad x=1 \\
& b^{2 / 5}-1 b^{1 / 5}-6=0 \\
& \left(b^{1 / s}+2\right)\left(b^{1 / 5}-3\right)=0 \\
& b^{1 / 5}+2=0 \quad b^{1 / 5}-3=0 \\
& b^{1 / 5}=-2 \\
& \left(b^{1 / 5}\right)^{5}=(3)^{5} \\
& (\sqrt[3]{b})^{s}=(-2)^{s} \\
& b=243 \\
& b=-32 \\
& x^{4}+2 x^{2}-3 \\
& x^{6}-x^{3}-2 \text { yes } \\
& \begin{array}{l}
x^{9}-2 x^{3}-35 \text { no } \\
x^{2 / 3}+3 x^{1 / 3}-10 \text { yes }
\end{array} \\
& \begin{array}{l}
x^{2 / 2}+3 x^{2 / 10} y s \\
x^{4 / 5}-x^{2 / s}-2 y s s
\end{array}
\end{aligned}
$$

Solving Radical Equations

$$
\begin{aligned}
& \sqrt{x+4}+2=5 \\
& (\sqrt{x+4})^{2}=(3)^{2} \\
& x+4=9 \\
& x=5 \\
& \sqrt{x+4}+2=5 \\
& \sqrt{9}+2=5 \\
& 3+2=54
\end{aligned}
$$

$$
\begin{aligned}
& \text { Check: } \begin{aligned}
& \sqrt{15}-\sqrt{25}=-1 \mid \sqrt{0}-\sqrt{1}=-1 \\
& 4-5=-1 \\
& 0-1=-1
\end{aligned} \\
& \begin{array}{l}
\sqrt{2 x-2}-\sqrt{3 x-2}=-1 \\
\left.(\sqrt{2 x-2})^{2}=(\sqrt{3 x-2}-1)^{2}\right) \\
2 x-2=(\sqrt{3 x-2}-1)(\sqrt{3 x-2}-1)
\end{array} \\
& \begin{array}{l}
\sqrt{2 x-2}-\sqrt{3 x-2}=-1 \\
(\sqrt{2 x-2})^{2}=(\sqrt{3 x-2}-1)^{2} \\
2 x-2=(\sqrt{3 x-2}-1)(\sqrt{3 x-2}-1)
\end{array} \\
& \text { Fol ! 2) sura boat } \\
& \text { sides. } \\
& \text { 1) Isolate a root. } \\
& 2 x-2=(\sqrt{3 x-2}-1)(\sqrt{3 x-2}-1) \text { 3) Clean url } \\
& 2 x-2=3 x-2-1 \sqrt{3 x-2}-\sqrt{3 x-2}+1 \\
& \text { Combine like } \\
& \text { terms. } \\
& \text { 4) Isolate the } \\
& \text { remaining root. } \\
& \begin{array}{l}
2 x-2=3 x+2 \\
(2 \sqrt{3 x-2})^{-2}=(x+1)^{2} \Longleftarrow \text { FOLL }
\end{array} \\
& \text { 5) Square both sides. } \\
& 4(3 x-2)=(x+1)(x+1) \\
& 12 x-8=x^{2} \pm 2 x+1 \\
& \text { 6) Set = to } 0 \text { \& solve } \\
& \text { (probably by factoring). } \\
& 0=x^{2}-10 x+9 \\
& 0=(x-9)(x-1) \\
& \text { 7) Check answers in } \\
& \text { original problem. (See } \\
& \text { green at top of problem.) }
\end{aligned}
$$

