$$
\begin{aligned}
& \text { SUM + DIFFERENCE |DENSITIES } \\
& \cos (A+B)=\cos A \cos B \Theta \sin A \sin B \\
& \cos \left(30^{\circ}+60^{\circ}\right)=\cos 30^{\circ} \cos 60^{\circ}-\sin 30^{\circ} \sin 60^{\circ} \\
& 0 \cdot \frac{1}{2} \cdot \frac{\sqrt{B}}{2} \\
& \cos \left(30^{\circ}+60^{\circ}\right)=\cos 30^{\circ}+\cos 60^{\circ} \\
& =0+1 / 2 \\
& \cos (A O B)=\cos A \cos B \Theta \sin A \sin B \\
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B} \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

February 10, 2023

$$
\begin{aligned}
& \text { Tor F } \quad F \cos \left(70^{\circ}-20^{\circ}\right)=\cos 70^{\circ}-\cos 20^{\circ} \leftarrow \text { Massively } \\
& \begin{aligned}
\text { F } \sin 70^{\circ}= & \sin 20^{\circ} \cos 50^{\circ}-\cos 20^{\circ} \sin 50^{\circ} \\
& =\sin \left(20^{\circ}-50^{\circ}\right)=\sin \left(-30^{\circ}\right) \\
T \tan 110^{\circ}= & \frac{\tan 80^{\circ}+\tan 30^{\circ}}{1-\tan 80^{\circ} \tan 30^{\circ}}=\tan \left(80^{\circ}+30^{\circ}\right) \\
& =\tan 110^{\circ}
\end{aligned}
\end{aligned}
$$

Evaluate. (Answer is a $\#$)

$$
\sin \frac{5 \pi}{4} \cos \frac{\pi}{2}-\cos \frac{5 \pi}{4} \sin \frac{\pi}{2}=\sin (A-B)
$$

$$
\sin \left(\frac{5 \pi}{4}-\pi / 2\right)
$$

$$
\sin \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}
$$

Find $\cos (A+B)$ given $\tan A=-\frac{\sqrt{5} y}{2} \frac{x}{x} \csc B=-\frac{3}{1}=\frac{r}{y}$

$$
\frac{\pi}{2}<A<\pi \text { and } \frac{3 \pi}{2}<B<2 \pi
$$

$$
\cos (A+B)=\frac{\frac{x}{r}}{\cos A \cos B-\sin A \sin B}
$$

$$
\left(-\frac{2}{3}\right)\left(\frac{a \sqrt{2}}{3}\right)-\left(\frac{\sqrt{5}}{3}\right)\left(\frac{-1}{3}\right)
$$

$$
=\frac{-4 \sqrt{2}}{9}+\frac{\sqrt{5}}{9}
$$

$$
=\frac{-4 \sqrt{2}+\sqrt{5}}{9}
$$

$$
\begin{aligned}
& 4+5=r^{2} \\
& \begin{array}{l}
+9=r^{2} \\
3=r
\end{array} \\
& \begin{array}{ll}
\text { IV } \\
\sqrt{5} & A^{3} \text { - } \\
-2
\end{array} \\
& x^{2}+\frac{1}{x^{2}}=\frac{9}{8}
\end{aligned}
$$

Verify.

$$
\frac{\sin (x+y)}{\cos x \cos y}=\tan x+\tan y
$$

$$
\begin{aligned}
\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y} & =\frac{\cos \sin x}{\cos y \cdot \cos x}+\frac{\sin y}{\cos y \cdot \cos x} \\
& =\frac{\sin x \cos y+\cos x \sin y}{\cos x \cos y}
\end{aligned}
$$

Aut \#63

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}+x\right)=-\sin x \\
& \cos \left(\frac{x}{A}+B\right) \\
& \cos \frac{\pi}{2} \cos x \\
& 0 \cdot \cos x
\end{aligned}
$$

