\qquad

TRIGONOMETRY JOURNAL INVERSE TRIG FUNCTIONS AND TRIG EQUATIONS

1. a) An inverse trig function represents \qquad .
b) When working with inverse trig functions, angles are always expressed in \qquad .
c) When working with inverse trig functions, fourth quadrant angles are always expressed as
2. \qquad and \qquad are both notations for inverse cosine.
3. When the inverse trig function is capitalized, this indicates that \qquad
\qquad should be used.
4. When working with inverse trig functions, an example problem that results in an angle as the answer is \qquad while an example problem that results in a value as the answer is \qquad .
5. The steps for solving an inverse trig equation are:
1)
2) \qquad
3)
6. What is the solution to an inverse trig equation if after Step 1 above, the following results: $\operatorname{Tan}^{-1} x=\frac{2 \pi}{3}$?
\qquad Why?
7. When solving trig equations, the two situations that require you to check your answers are \qquad
\qquad -
8. When solving a trig equation, why does your calculator give you the following answers when you ask it to find an angle?
$\sin x=-\frac{\sqrt{3}}{2}$ Answer: -60° (rather than 300°) \qquad $\cos x=-\frac{\sqrt{2}}{2}$ Answer: 135° (rather than 300°) \qquad
9. When solving trig equations, you should substitute in identities when you have \qquad
\qquad or \qquad .
10. (a) If a trig equation contains double angles, you should substitute in a double angle identity when \qquad .
(b) If a trig equation contains double angles (or another multiple angle such as $3 x$ or $x / 2$), you should solve for angle $2 x$ and divide the answers by 2 when \qquad
\qquad -
(c) In a problem like (b), why can you potentially have $4,6,8$ or more solutions? \qquad
11. List the following.
a) Quadrants where inverse trig functions are defined
