Combinatorics \& Probability

\# of ways to perform an event
Hamburgers chips $2 \cdot 3=6$

Hot Dogs tries tatortots
How many different meals are possible?
Fundamental Counting Principle--If there are p ways to do one event and q ways to do another, then there are $p . q$ ways to do both.

Car manufacturer
8 body colors

2 fabrics
3 option packages
How many different cars can be made?

Permutations - \# of arrangements or patterns that can be formed from a set of objects

Linear Permutations

1) All Objects $=n!$

How many ways are there to arrange the students sitting in the front row?

$$
\begin{aligned}
& 4-3 \cdot 2 \cdot 1=24 \\
& \text { factorial } 4!=24
\end{aligned}
$$

2) Arrange a small group chosen from a larger group $={ }_{n} \operatorname{Pr}$

How many ways can 4 relay runners be positioned for a race if chosen from 6 possible team members?

$$
{ }_{6} P_{4}=\frac{6!}{2!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1}=360
$$

3) Alike Objects--indistinguishable, identical $=\frac{\text { total! }}{a_{\text {like } a l i k e!}}$ How many permutations of the letters in the word MISSISSIPPI are possible?

$$
\begin{aligned}
& \frac{11!}{4!4!2!}=34,650 \\
& 5 \text { IP }
\end{aligned}
$$

How many ways can 5 identical basketballs, 4 identical volleyballs, and 3 identical soccer balls be arranged in a line?

$$
\frac{12!}{5!9!3!}=27.720
$$

Special Cases

4) Specific locations or Repeated objects - Draw blanKs

How many ways can six people from this class be arranged in row if there must be a sophomore on each end of the row and two juniors in the middle seats?

$$
\frac{6}{S_{0}} \cdot 9 \cdot \frac{7}{J r} \cdot \frac{6}{J_{r}} \cdot 8 \cdot \frac{5}{S_{0}}=90,720
$$

How many different license plates are possible with 3 letters followed by 3 digits letters cannot be repeated but digits can be repeated?

$$
\frac{26}{L} \frac{25}{L} \frac{24}{L} \cdot \frac{10}{D} \cdot 10 \cdot \frac{10}{D}=15,600,000
$$

COMBINATIONS - the \# of groups that can be ${ }_{n} C_{r} \quad$ formed from a set of objects

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

$$
{ }_{7} c_{5}=\frac{(n-r)!r!}{2!5!}=\frac{7 \cdot \frac{3}{6 \cdot 5 \cdot(\cdot) \cdot z \cdot}}{x \cdot 1 \cdot 5 \cdot 4 \cdot 5 \cdot 1}=21
$$

Mrs. Meyer wants to form an "I Love Math" Committee to promote mathematics throughout the school. How many different committees of 5 students can be selected from this class?

$$
{ }_{13} C_{5}=1287
$$

