Inverse Trig Fund + Trig Eq. Review
Inv. Trig Func. represent angles'. - always in rads

- $9^{\text {th }}$ quadr. angles are written as negative angles.

$\operatorname{sen}^{\prime} \cdot \operatorname{Cos}^{-1} x$	
$-\left(\begin{array}{c}\cos ^{2} x \\ \sec ^{2} x \\ \cot ^{2} x\end{array}\right.$	All +
	$\left.\begin{array}{c}\csc ^{-1} x \\ \sin ^{-1} x \\ \operatorname{Tan}^{-1} x\end{array}\right)$

$\operatorname{Cos}^{-1}\left(-\frac{\sqrt{3}}{2}\right)$

$\tan \theta$

$$
\tan (\underbrace{\operatorname{Sec}^{-1}-\frac{5}{2}})
$$

$$
\begin{aligned}
& y^{2}+4=25 \\
& \sqrt{y^{2}}=\sqrt[4]{21}
\end{aligned}
$$

$$
\tan \theta=\frac{\sqrt{21}}{-2}
$$

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2\left(\frac{2 \sqrt{10}}{7}\right)\left(\frac{3}{7}\right) \\
& =\frac{12 \sqrt{10}}{49}
\end{aligned}
$$

$$
\begin{aligned}
& \cos (\underbrace{\sin ^{-1} \frac{4}{3}}_{A}-\underbrace{\operatorname{Tan}^{-1}\left(-\frac{3}{5}\right)}_{B}) \\
= & \cos (\cos B+\sin A \sin B \\
& \operatorname{Like} 9-10 \\
& \csc \left(\cot ^{-1} \frac{5}{x}\right) \frac{x}{y} \\
& \sqrt{2 \times 25} x \\
& \sqrt{x^{2}+25}=\sqrt{r^{2}}
\end{aligned}
$$

Inv Trig Equations

1) Isolate trig func with

Solve
$\frac{7}{4} \times \frac{4}{7} \operatorname{Arccos}\left(\frac{2 x}{3}\right)=\frac{3 \pi}{7} \cdot \frac{\pi}{4}$ variables
2) Switch positions using a inverse
$\operatorname{Arccos}\left(\frac{2 x}{3}\right)=\frac{3 \pi}{4} \operatorname{stop}_{\text {check }} 3$) Solve.

14	

$$
\begin{aligned}
\cos \left(\frac{3 \pi}{4}\right) & =\frac{2 x}{3} \\
\frac{3}{2} \cdot \frac{\sqrt{2}}{2} & =\frac{2 x}{3} \cdot \frac{3}{2} \\
-\frac{3 \sqrt{2}}{4} & =x .
\end{aligned}
$$ 8uactrant

$\uparrow y_{a}, \frac{3 \pi}{4}$ is QT $\cos ^{-1} x$ exists in 9

$$
\begin{gathered}
\csc ^{-1}(2 x)+\cos ^{-1}\left(\frac{2}{2}\right)=\frac{\pi}{6} \\
\csc ^{-1}(2 x)+\frac{\pi}{3}=\pi / 6 \\
\csc ^{-1}(2 x)=-\frac{\pi / 3}{6} \Leftarrow-\pi / 3 \\
\csc \left(-\frac{\pi}{6}\right)=2 x \\
-\frac{2}{2}=\frac{2 x}{2} \\
-1=x
\end{gathered}
$$

