

ASA, ABS

$$
\begin{aligned}
& C=180^{\circ}-52^{\circ}-70^{\circ}=58^{\circ} \\
& \text { syr } 2^{\circ} \frac{a}{\sin 52^{\circ}}=\frac{232 \cdot \sin 52^{\circ}}{\sin 58^{\circ}}
\end{aligned}
$$

Find all missing parts.

$$
\begin{aligned}
a & =216 \\
\frac{b}{\sin 70^{\circ}} & =\frac{232}{\sin 58^{\circ}} \\
b & =257
\end{aligned}
$$

To check for Ind Δ
when SSA

1) Solve Law of Sines to get first angle $\left(A_{1}\right)$
2) $A_{2}=180^{\circ}-A_{1}$
3) $A_{2}+\underset{\substack{\text { Givengle } \\ \text { angl }}}{\text { 2) }} 80^{\circ}$, then $2 A^{\prime}$ s
$A_{2}+\begin{gathered}\text { Givengle } \\ \text { angle }\end{gathered} \geq 180^{\circ}$, then no and Δ

$$
\begin{aligned}
& \text { Law of Cosines } \\
& \text { SAl, SSS } \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& b=\sqrt{a^{2}+c^{2}-2 a c \cos B}
\end{aligned}
$$

Find C.

$$
44^{2}=56^{2}+37^{2}-2(56)(37) \cos C
$$

$$
\begin{aligned}
\frac{44^{2}-56^{2}-37^{2}}{-2(56)(37)} & =-2(56)(37) \cos C \\
0.6199 & =\cos C \\
\cos ^{-1}(0.6199) & =C \\
52^{\circ} & =C
\end{aligned}
$$

