$$
\begin{aligned}
& \text { Sequences + Series } \\
& \underset{\sim}{x} \\
& \text { follow a pattern } \\
& \stackrel{\underset{c}{c}}{\stackrel{-}{c}} 10,8,6.4 \ldots t^{-2} \\
& 3,6,12,24 \ldots * 2 \\
& 1,2,4,7, \prod_{x, y} \prod_{x} \cdots \cdots \\
& \text { Arithmetic seq. - adds the } \\
& \text { same value } \\
& \text { to each form } \\
& \text { Fibunacel Sequence - Leonardo de Fibonacci } \\
& \text { - adds the two previous } \\
& \text { numbers } \\
& 1,1,2,3,5,8,13,21,34,55, \ldots a_{n} \\
& a_{1} a_{2} \\
& \uparrow \text { last or } \\
& \text { unknown tor } \\
& n=\# \text { of terms } \\
& a_{n-1}=\text { the next to the last term }
\end{aligned}
$$

Find the list 4 terms.

$$
\begin{aligned}
& a_{n}=4 n+2 \\
& a_{1}=4(1)+2=6 \\
& a_{2}=4(2)+2=10 \\
& a_{3}=4(3)+2=14 \\
& a_{4}=4(9)+2=18
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{n+2}{2 n} \\
& a_{1}=\frac{1+2}{2(1)}=\frac{3}{2} \\
& a_{2}=\frac{2+2}{2(2)}=\frac{4}{4}=1 \\
& a_{3}=\frac{3+2}{2(3)}=\frac{5}{6} \\
& a_{4}=\frac{4+2}{2(4)}=\frac{6}{8}=3 / 4
\end{aligned}
$$

Summation Notation

$$
\begin{aligned}
& \text { Sigma }=\text { sum } 4 \\
& \rightarrow \sum_{n=1}^{4}(2 n-3)=(2(1)-3)+(2(2)-3)+(2(3)-3) \quad(2(4)-3) \\
& -1+1+3+5=8 \\
& * \sum_{j=22}^{50} \frac{a_{n}}{(4 j+7)}=\begin{array}{ll}
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) & a_{n}=a_{1}+d(n-1) \\
S_{n} \overline{2} \frac{29}{2}(95+207) & S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
\end{array} \\
& a_{1}=4(22)+7=95^{+1=29}=4379 \\
& a_{n}=4(5 \mathrm{sc})+7=207 \\
& n=50-22 \\
& \sum_{i=2}^{5}\left(3^{i-1}\right)=\begin{array}{l}
3^{2-1}+3^{32}+3^{3}+3^{4} \\
3+9+27+81=
\end{array} \\
& \text { Geometric-multiply by } \frac{\text { same }}{\text { value }}
\end{aligned}
$$

Arithmetic Sequences - add the same value to each term.
$1,2,3,4.5 \ldots d=$ Common $\operatorname{difference}=$ the same
$2,4,6,8 \ldots \quad$ value added
$2.4,3.6,4.8,6.0, \ldots d=a_{2}-a_{1}$
$\frac{1}{2}, \frac{11}{10}, \frac{17}{10}$,
$+3 / \mathrm{s}$
$100,93,86,79 \ldots d=-7$
3. $11,19,27, \ldots . \quad$ Find $200^{\text {th }}$ term.

$$
\begin{array}{ll}
3+83+16 & 3+24 \\
3+(8.1) 3+(8.2) & 3+(8.3)
\end{array} \quad \begin{aligned}
& 3+(8.199)= \\
& a_{n}=a_{1}+d(n-1)
\end{aligned}
$$

$\frac{17}{12}, \frac{5}{6}, \frac{1}{4}, \ldots . \quad$ Find the $8^{\text {th }}$ term.

$$
\begin{gathered}
\frac{17}{12}, \frac{10}{12}, \frac{3}{12} \\
d=-\frac{7}{12}
\end{gathered}
$$

$$
\begin{aligned}
a_{8} & =\frac{17}{12}+\frac{-7}{12}\left(8^{7}-1\right) \\
& =\frac{17}{12}-\frac{49}{12} \\
& =\frac{-32}{12}=\frac{-8}{3}
\end{aligned}
$$

Arithmenc Series
Series $=$ sum of terms in a sequence.
$S_{n}=$ sum of n terms

$$
\begin{gathered}
S_{4}=5+8+11+14 \\
+\frac{S_{4}}{2 S_{4}}=\frac{14+11+8+S}{19+19+19+19} \\
2 S_{4}=4(19) \\
\frac{\partial S_{4}}{2}=\frac{76}{2} \\
S_{4}=38
\end{gathered}
$$

$$
=38
$$

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& a_{n}=a_{1}+d(n-1)
\end{aligned}
$$

How many seats will be in the $30^{\text {h }}$ row?

$$
a_{30}=4+2(30-1)=62
$$

How many seats in section?

$$
\begin{aligned}
& \text { many seats in section! } \\
& S_{30}=\frac{30}{2}(4+62)=990 \text { seats }
\end{aligned}
$$

Find S_{n}.

$$
a_{n}=a_{1}+d(n-1)
$$

$$
\begin{aligned}
& 52+64+76+\cdots .+1816 \quad S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{n}=\frac{148}{2}(52+1816) \quad \begin{array}{l}
S_{n}=a_{1}+d(n-1) \\
1816=52+12(n-1) \\
-52=-52 \\
\frac{1764}{12}=\frac{12(n-1)}{12} \\
147=n-1 \\
148=n
\end{array}
\end{aligned}
$$

