Parametric Equations
Equations that describe the horizontal \downarrow vertical motion of an object in terms of time.

$$
\begin{aligned}
& \hat{1}_{100 \mathrm{H} / \mathrm{s}} h(t)=\frac{1}{2} a t^{2}+V_{0} t+S_{\gamma} \quad a=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& a=-32 \mathrm{ft} / \mathrm{s}^{2} \\
& \frac{\mid+1 y: y}{x: y} \begin{array}{ll}
x & y=\underline{|v| \cos \theta} \\
x & \underline{\mid v i n} \theta
\end{array} \\
& \begin{array}{l}
\text { velocity } \quad a=-3 \\
x_{t}=|v| t \cos \theta
\end{array} \\
& y_{t}=\frac{1}{2} a t^{2}+|v| t \sin \theta+S_{0}
\end{aligned}
$$

Tiger estimates the distance to the pin to be 220 yds . His swing will produce an initial velocity of $160 \mathrm{ft} / \mathrm{s}$ at an angle of 28°. Will the ball land in the hole?

$$
\begin{aligned}
& x_{t}=\| V \mid t \cos \theta \\
& y_{t}=\frac{1}{2} a t^{2}+\| \mid t \sin \theta+s_{0}
\end{aligned}
$$

$x_{t}=160 t \cos 28^{\circ}$

$$
220 y d=660 f
$$

$$
y_{t}=-16 t^{2}+160 t \sin 2
$$

$$
660 \quad 160 t \cos 288
$$

$y_{t}=-16(4.7)^{2}+160(4.7) \sin 28$

$$
16000281410 \cos 280
$$

$$
y=-0.39 \mathrm{ft}
$$

$$
4.7_{\mathrm{sec}}=t
$$

How far from the enemy tank must he launch to hit the ninja?

$$
\begin{aligned}
x_{t} & =6000 t \cos 32^{\circ} \\
y_{t} & =\frac{1}{2}(-9.8) t^{2}+6000 t \sin 32^{\circ}+6 \\
& =-4.9 t^{2}+6000 t \sin 32^{\circ}+6 \\
5 & =-4.9 t^{2}+6000 t \sin 32^{\circ}+6 \\
0 & =-4.9 t^{2}+6000 t \sin 32^{\circ}+1 \\
t & =\frac{-6000 \sin 32^{\circ} \pm \sqrt{\left(6000 \sin 32^{\circ}\right)^{2}-4(-4.9)(1)}}{2(-4.9)} \\
t & =648.9 \mathrm{sec} \\
x_{t} & =6000(648.9) \cos 32^{\circ}=3,301,790 \mathrm{~m}
\end{aligned}
$$

\square

