$$
\begin{aligned}
& \text { Trig Suestitution } \\
& a^{2}-x^{2} \quad x=a \sin \theta \\
& x^{2}+a^{2} \quad x=a \tan \theta \\
& x^{2}-a^{2} \quad x=a \sec Q \\
& p^{2}+x^{2}=9 \quad \sqrt[3]{p^{2}}=\sqrt{9-x^{2}} \quad \frac{\sqrt{9-x^{2}}}{\sqrt{9}} \\
& \int \frac{x^{2}}{\sqrt{9-x^{2}}} d x \\
& x=3 \sin \theta \quad \frac{y}{r} \frac{x}{3}=\sin \theta \\
& d x=3 \cos \theta d \theta \quad \theta=\sin \frac{x}{3} \\
& \int \frac{9 \sin ^{2} \theta}{\sqrt{9-9 \sin ^{2} \theta}} \cdot 3 \cos \theta d \theta \\
& \frac{27}{3} \int \frac{\sin ^{2} \theta \cos \theta}{\sqrt{1-\sin ^{2} \theta}} d \theta \quad \begin{array}{l}
\frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)-\frac{9}{4} \cdot 2 \sin \theta \cos \theta+C \\
9 \sin ^{-1}\left(\frac{x}{3}\right)-\frac{2}{2}\left(\frac{x}{3}\right)\left(\frac{\sqrt{9-x^{2}}}{3}\right)+C
\end{array} \\
& 9 \int \frac{\sin ^{2} \theta \cos \theta}{\sqrt{\cos ^{2} \theta}} d \theta \\
& 9 \int \frac{\sin ^{2} \theta \cos \theta}{\cos \theta} d \theta \\
& \frac{9}{2} \sin ^{-1}\left(\frac{x}{3}\right)-\frac{1}{2} x \sqrt{9-x^{2}}+C \\
& \frac{9}{2} \int(1-\cos 2 \theta) d \theta \\
& \frac{9}{2}\left[\theta-\frac{1}{2} \sin 2 \theta\right]+C
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\int \tan ^{2} \theta d \theta & =\int\left(\sec ^{2} \theta-1\right) d \theta \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& =\tan \theta-\theta+c \quad \\
\int \frac{1}{\sec ^{2} \theta} d \theta & =\int \cos ^{2} \theta d \theta\left(\sec ^{2} \theta-\operatorname{cin}^{2} \theta\right) \tan +0
\end{array}\right)
$$

$$
\begin{aligned}
& \int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x \\
& \begin{array}{l}
x=2 \tan \theta \\
d x=2 \sec ^{2} \theta d \theta
\end{array} \quad \rightarrow \frac{x}{x}=\tan \theta \\
& \begin{array}{l}
\int \frac{2 \sec ^{2} \theta}{4 \tan ^{2} \theta \sqrt{4 \tan ^{2} \theta+4}} d \\
-\int \frac{\sec ^{2} \theta}{\tan ^{2} \theta \sqrt{\tan ^{2} \theta+1}} d \theta
\end{array} \\
& \frac{1}{4} \int \frac{\sec ^{2} \theta}{\tan ^{2} \theta \sqrt{\sec ^{2} \theta}} d \theta \\
& \frac{1}{4} \int \frac{\sec ^{2} \theta}{\tan ^{2} \theta \cdot \sec \theta} d \theta \\
& \frac{-1}{4 \sin \theta}+C \\
& \frac{-1}{4\left(\frac{x}{x}\right)}+C \\
& =-\frac{\sqrt{x^{2}+4}}{4 x}+C \\
& \frac{1}{4} \int \frac{\frac{1}{\cos \theta}}{\frac{\sin ^{2} \theta}{\cos ^{4} \theta}} d \theta \\
& \frac{1}{4} \int \frac{1}{\cos \theta} \cdot \frac{\cos ^{2} \theta}{\sin ^{2} \theta} d \theta \\
& \frac{1}{4} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta \quad \begin{array}{l}
u=\sin \theta \\
d u=\cos \theta d \theta
\end{array} \\
& \frac{1}{4} \int \frac{\operatorname{soc} \theta}{u^{2}} \cdot \operatorname{cis}_{\cos \theta} \quad \frac{d u}{\cos \theta}=d \theta \\
& \frac{1}{4} \int \frac{1}{u^{2}} d u \\
& \frac{1}{4} \int u^{-2} d u \\
& \frac{1}{4} \frac{u^{-1}}{-1}+c \\
& -\frac{1}{4 u}+c \\
& -\left.\frac{1}{4 u}\right|_{-} ^{-}
\end{aligned}
$$

