Discovered 1980 - Benoit Mandelbrot 1920's - Gaston Julia
Dynamical systems - anything that moves or * Weather prediction changes in time

* stocK market
* chemical reactions

Mandelbrot Set--Choose coordinate for c-value. Always iterate beginning with 0 . Change coordinate for c-value each time you want to color a different point.

$$
\begin{aligned}
& f(x)=x^{2}+c \\
& f(x)=x^{2}+(1+0 i) \\
& f(0)=0^{2}+1=1 \\
& f(1)=1^{2}+1=3 \\
& f(2)=2^{2}+1=5 \\
& f(5)=5^{2}+1=26 \\
& f(26)=26^{2}+1=\text { big } \\
& \text { bia } 2+1=\text { bigger }
\end{aligned}
$$

red - fast
yillmo ... sorta fast
${ }_{2} \mathrm{Pln}_{2} \mathrm{pli}$ - slow

seed value $x_{1}=0$
Orbit - the list of H's
that result from iteration
Colors = how fast the orbit went to ∞
black = orbit does not go to ∞

Mandelbrot Set--Choose coordinate for c-value. Always iterate beginning with 0 . Change coordinate for c-value each time you want to color a different point.

Calculator:

1) $x^{2}+(1+i) \mid x=0$

2) $x^{2}+(1+i) \mid x=A n s$

Julia Set--Choose a c-value from the Mandelbrot Set and leave it fixed. Iterate using a different seed (starting) value. The seed value is the coordinate you are trying to color.
Activity 5: Iterate the function $f(x)=x^{2}+(0+0 i)$
Problem \#1: $x_{0}=0.5$
Calculator:

1) $x^{2}+0 \mid x=0.5$
2) $x^{2}+0 \mid x=A n s$

For each problem, start the iteration with the x_{0} value given.

May 11, 2023

May 11, 2023

