Discovered 1980 - Benoit Mandelbrot 1920's - Graston Julia Dynamical systems - anything that moves or Change in time * Weather prediction * stock market * Chemical reactions

Mandelbrot Set--Choose coordinate for c-value. Always iterate beginning with 0. Change coordinate for c-value each time you want to color a different point.

$$f(x) = x^{2} + C$$

$$f(x) = x^{2} + (1+0i)$$

$$f(0) = 0^{2} + 1 = 3$$

$$f(1) = 1^{2} + 1 = 3$$

$$f(2) = 2^{2} + 1 = 5$$

$$f(3) = 5^{2} + 1 = 26$$

$$f(26) = 26^{2} + 1 = big$$

$$f(26) = 26^{2} + 1$$

Mandelbrot Set--Choose coordinate for c-value. Always iterate beginning with 0. Change coordinate for c-value each time you want to color a different point.

Calculator:

1)
$$x^{2} + (1+i) | x = 0$$

 $0^{2} + (1+i) | x = 0$
 $(1+i)^{2} + (1+i) | x = Ans$

Seed value
$$x_1 = 0$$

Julia Set--Choose a c-value from the Mandelbrot Set and leave it fixed. Iterate using a different seed (starting) value. The seed value is the coordinate you are trying to color.

Activity 5: Iterate the function $f(x) = x^{2} + (0 + 0i)$

Problem #1: $x_{s} = 0.5$

Calculator:

1) $x^{1} + 0 \mid x = 0.5$

2) $x^2 + 0 \mid x = Ans$

For each problem, start the iteration with the x_{\bullet} value given.

