$$
\text { ANTIDIFFERENTIATION }=1 \text { NTEGRATION }
$$

$$
\begin{aligned}
& \int\left(6 x-30 x^{4}\right) d x \\
= & \frac{6 x^{2}}{2}-\frac{30 x^{5}}{5}+C \\
= & 3 x^{2}-6 x^{5}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Derivative } \\
& f(x)=3 x^{2}-6 x^{5}+7 \\
& f^{\prime}(x)=\frac{6 x^{2}-\frac{30 x^{2}}{5}}{}
\end{aligned}
$$

Power Rule for Integrals

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}
$$

$$
\left.\begin{array}{ll}
& \int\left(8 x^{5}-\frac{1}{2 x^{6}}+\sqrt[3]{x^{2}}-5\right) d x
\end{array} \quad y=x^{3}\right\}
$$

Derivative - Decrease the power Integration- Increase the power

$$
\begin{aligned}
& \int \begin{array}{l}
\left(x^{2}-3\right)\left(x^{5}+8 x\right) d x \\
\text { Forl }
\end{array} \\
& \int\left(x^{7}+8 x^{3}-3 x^{5}-24 x\right) d x^{*}+C \\
&= \frac{x^{8}}{8}+\frac{8 x^{4}}{4}-\frac{3 x^{6}}{6}-\frac{24 x^{2}}{2}+C \\
&= \frac{x^{8}}{8}+2 x^{4}-\frac{1}{2} x^{6}-12 x^{2}+C \\
& \int \frac{3 p^{4}-2 p^{2}+9}{p^{2 / 3}} d p \\
& \int\left(3 p^{4}-2 p^{2}+9\right) p^{-2 / 3} d p \\
&= \int\left(3 p^{10 / 3}-2 p^{4 / 3}+9 p^{-2 / 3}\right) d p \\
&= \frac{3}{13} \cdot \frac{3 p^{4 / 3}}{13 / 3}-\frac{3}{7} \cdot 2 p^{7 / 3}+3 \cdot 9 p^{1 / 3}+C \\
&= \frac{9}{13} p^{13 / 3}-\frac{6}{7} p^{7 / 3}+27 p^{1 / 3}+C
\end{aligned}
$$

$$
\begin{aligned}
& \int_{-1}^{2}\left(6 x^{2}-2 x+1\right) d x \\
= & \frac{6 x^{3}}{3}-\frac{2 x^{2}}{2}+x+\left.C\right|_{-1} ^{2} \\
= & 2 x^{3}-x^{2}+x+\left.C\right|_{-1} ^{2} \\
= & 16-4+2+C+\left[4-2+1+1+C^{2}\right] \\
= & 18
\end{aligned}
$$

$$
\begin{aligned}
& \int_{4}^{9}\left(\frac{1}{\sqrt{x}}+2 \sqrt{x}\right) d x \\
& \int_{4}^{9}\left(x^{-1 / 2}+2 x^{1 / 2}\right) d x \\
& =\frac{2}{1} \cdot x^{1 / 2}+\left.\frac{2}{3} \cdot 2 x^{3 / 2}\right|_{4} ^{9} \\
& =2 \sqrt{x}+\left.\frac{4}{3} \sqrt[3]{x^{3}}\right|_{4} ^{9} \\
& =2 \sqrt{9}+\frac{4}{3} \sqrt{9^{3}}+\left(\frac{5}{2}+\frac{4}{3} \sqrt{4^{3}}\right) \\
& =6+\frac{4}{3} \cdot \frac{27}{2}-4-\frac{4}{3} \cdot 8 \\
& =6+\frac{36}{}-4-\frac{32}{3} \\
& =38-\frac{32}{3} \\
& =\frac{114}{3}-\frac{32}{3}=\frac{82}{3}
\end{aligned}
$$

$\lim _{\Delta x \rightarrow 0} \sum_{x=a}^{b} f(x) \Delta x$
l_{x} length $^{\jmath}$ width

$$
=\int_{a}^{b} f(x) d x
$$

the area between a function $\&$ an axis.

$$
\begin{aligned}
& \int_{1}^{4}(x+1) d x \\
= & \frac{x^{2}}{2}+\left.x\right|_{1} ^{4} \\
= & 8+4-\left(\frac{5}{2}+1\right) \\
= & 10.5
\end{aligned}
$$

Integration represents the area betineen a function + an axis.

