More Derivatives
Product Rule

$$
\begin{aligned}
& \frac{d}{d x} f \cdot g=f \cdot g^{\prime}+g \cdot f^{\prime}<\frac{f^{\frac{1}{(x)}-21 x^{6}-20 x^{3}}}{=420 x^{9}} \\
& =1 \text { st } \cdot d^{\prime} 2 n d+2 n d \cdot d^{\prime} \text { iss } \quad f^{\prime}(x)=3 x^{7} \cdot 20 x^{3}+5 x^{4} \cdot 21 x^{6} \\
& =60 x^{10}+105 x^{10} \\
& =165 x^{10} \\
& f(x)=\left(7 x^{5}-3 x^{8}-2\right)\left(8 x-4 x^{9}-27\right) ; \\
& f^{\prime}(x)=\left(7 x^{5}-3 x^{2}-2\right)\binom{8-36 x^{8}}{1 \text { st }}+\left(8 x-4 x^{9}-27\right)\left(35 x^{4}-24 x^{7}\right)
\end{aligned}
$$

Quotient Rule

$$
\begin{aligned}
\frac{d}{d x} \frac{f}{g} & =\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}} \\
& =\frac{10 \omega \cdot d^{\prime} h i g h-h ı g h \cdot d^{\prime} / 0 \omega}{l o w^{2}} \\
f(x) & =\frac{x^{4}-7 x^{3}+8}{2 x^{5}-17 x^{2}} \\
f^{\prime}(x) & =\frac{\left(2 x^{5}-17 x^{2}\right) \cdot\left(4 x^{3}-21 x^{2}\right)-\left(x^{4}-7 x^{3}+8\right)\left(10 x^{4}-34 x\right)}{\left(2 x^{5}-17 x^{2}\right)^{2}}
\end{aligned}
$$

Chain Rule

$$
\begin{aligned}
& \frac{d}{d x} f[g(h(x))]=f^{\prime}[g(h(x))] \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& f(x)=\left(4 x^{3}-7 x^{2}+4\right)^{8} \quad \begin{array}{c}
\text { Use when you have } \\
\text { a quantity } \\
\text { raised to a power }
\end{array} \\
& f^{\prime}(x)=8\left(4 x^{3}-7 x^{2}+4\right)^{7} \cdot\left(12 x^{2}-14 x\right)^{7} \\
& f(x)=\sqrt[3]{x^{2}+3 x-5\left(x^{2}+4\right)^{9}}=\left(x^{2}+3 x-5\left(x^{2}+4\right)^{9}\right)^{1 / 2} \\
& f^{\prime}(x)=\frac{1}{2}\left(x^{2}+3 x-5\left(x^{2}+4\right)^{9}\right)^{-1 / 2} \cdot\left[2 x+3-45\left(x^{2}+4\right)^{8} \cdot 2 x\right]
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\frac{\left(x^{5}-4 x^{3}+8 x\right)\left(7 x^{2}-3 x+10\right)}{\left(x^{9}-3\right)^{8} \text { d'high }} \\
f^{\prime}(x)= & \frac{\left(x^{9}-3\right)^{8} \cdot\left[\left(x^{5}-4 x^{3}+8 x\right)(14 x-3)+\left(7 x^{2}-3 x+10\right)\left(5 x^{4}-12 x^{2}+8\right)\right]}{\left[\left(x^{5}-4 x^{3}+8 x\right)^{\text {high }\left(7 x^{2}-3 x+10\right) \cdot 8\left(x^{9}-3\right)^{7} \cdot 9 x^{8}}\right.} \underset{ }{\left[\left(x^{9}-3\right]^{8}\right.}
\end{aligned}
$$

