May 1, 2023

Radians (su.3.3) $60^{\circ} .5 \mathrm{~cm}=30 \mathrm{ch} \mathrm{m}^{\circ}$

$\frac{1 \mathrm{rad}}{r}=\frac{360^{\circ}}{2 \pi r}$
$2 \pi \mathrm{rad}=360^{\circ} \mathrm{K}$
$2 \pi \mathrm{ral}=360^{\circ}$
$\pi \mathrm{rad}=180^{\circ}$

$$
140^{\circ} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}
$$

$$
=\frac{140}{189} \pi
$$

$$
=\frac{7}{9} \pi \mathrm{rad}
$$

$2 \pi \mathrm{rad} \cdot 10 \mathrm{ft}=20 \pi \mathrm{ft}$.

$$
\begin{aligned}
& \sin \theta=\frac{y^{\frac{|r| y}{x}}}{r} \csc \theta=\frac{r}{y} \\
& \cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x} \\
& \tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y}
\end{aligned}
$$

Given θ passes

Angle Θ passes through the point $(-2,5)$. Find $\sin \theta$.

$$
\begin{array}{rlr}
\sin \theta & =\frac{y}{r} \quad(5)^{2}+(-2)^{2}=r^{2} \\
& =\frac{5 \sqrt{29}}{\sqrt{29} \sqrt{29}} & 25+4=r^{2} \\
& =\frac{5 \sqrt{29}}{29}=
\end{array}
$$

Find $\sec \theta$.

$$
\frac{\mid 2 \sqrt{3}}{\sqrt{4} \mid 2}
$$

$$
\begin{aligned}
& c \theta . \\
& \sec \theta=\frac{r}{x}=\frac{x^{2}}{z \sqrt{3}}=\frac{2}{\sqrt{3}} \cdot \sqrt{3}=\frac{2 \sqrt{3}}{3} \\
& (2 \sqrt{3})^{2}+(-2)^{2}=r^{2} \\
& 4 \cdot 3 \\
& 12+4=r^{2} \\
& \sqrt{16}=\sqrt{r^{2}} \\
& 4=r
\end{aligned}
$$

Possible Impossible Values

$$
\begin{aligned}
& \text { Possible or Imp possible? } \\
& \begin{array}{c}
\cos \theta=\frac{-3}{4} \quad \text { Poss. } \\
\csc \theta=100 \quad \text { Poss. } \\
3 \sin \theta-2=5 \\
r^{2}+2 \\
\sin \theta=7 \\
\sin \theta=7 / 3 \text { Imp. }
\end{array}
\end{aligned}
$$

